
Design and Analysis of Algorithms

2

Textbooks

•  Required Text:
–  Cormen, T.H., Leiserson, C.E., Rivest, R.L. & Stein, C. (2009).

Introduction to Algorithms, 3rd Ed. Cambridge, Mass: MIT
Press.

3

Assignments

•  You will learn best if you try to tackle each problem by yourself
initially.

•  You are encouraged to discuss the problems and work in groups to
overcome roadblocks.

•  You are encouraged to team up with a partner and write up a single
assignment report (maximum 2 per group).

•  Make the reports as concise and organized as possible. Marks may
be taken off for excess verbosity or lack of clarity.

•  Late assignments are not excepted (except for medical emergencies
– please see syllabus).

4

Please ask questions!

Help me know what people
 are not understanding!

Lecture 1. What is this course about?

6

Course Content

•  A list of algorithms.
–  Learn their code.

–  Trace them until you are convinced that they work.

–  Implement them.

–  Worry about details.

 class InsertionSortAlgorithm extends SortAlgorithm
{

 void sort(int a[]) throws Exception {

 for (int i = 1; i < a.length; i++) {

 int j = i;

 int B = a[i];

 while ((j > 0) && (a[j-1] > B)) {

 a[j] = a[j-1];

 j--; }

 a[j] = B;

 }}

7

–  Knowledge: An up to date grasp of fundamental problems
and solutions

–  Ability: Principles and techniques that can be adapted to
solve new problems

The future belongs to the computer scientist/engineer who has

8

Course Content
•  A survey of algorithmic design techniques.
•  Abstract thinking.

•  How to develop new algorithms for any problem that
may arise.

9

A survey of fundamental ideas
and algorithmic design

techniques

For example . . .

10

Mathematical Tools

Input Size

T
im

e

Classifying Functions
f(i) = nΘ(n)

Recurrence Relations
T(n) = a T(n/b) + f(n)

Summations
∑i=1 f(i).

Time Complexity
t(n) = Θ(n2)

11

Iterative Algorithms
Loop Invariants

i-1 i

i

0

<preCond>
codeA
loop
 <loop-invariant>
 exit when <exit Cond>
 codeB
codeC
<postCond>

9 km

5 km

Code Relay Race One step
at a time

12

Recursive Algorithms

?

?

13

Graph Search Algorithms

14

Network Flows

15

Greedy Algorithms

Example: Making Change

16

Dynamic Programing

5 3

4

2 8 4 5 2 3

1 6 5 7 5

3 2 6 4 4

8 5 9 8 2

17

Reduction

=

18

NP-Completeness

Useful Learning Techniques

20

Read Ahead

You are expected to read the lecture notes before the
lecture.

This will facilitate more productive discussion during class.

21

Explaining

•  We are going to test you on
your ability to explain the
material.

•  One good way to study is to
explain the material over and
over again to yourself or to
each other.

Be Creative

• Ask questions.

•  Why is it done this way and not that way?

23

Guesses and Counter Examples

•  Guess at potential algorithms for solving a problem.

•  Look for input instances for which your algorithm gives
the wrong answer.

•  Treat it as a game between these two players.

24

Refinement:
The best solution comes from a process of
repeatedly refining and inventing alternative

solutions

  Rudich www.discretemath.com

End

