Central Algorithmic Techniques

Iterative Algorithms

Code Representation of an Algorithm

class InsertionSortAlgorithm extends SortAlgorithm \{ void sort(int a[]) throws Exception \{

$$
\begin{aligned}
& \text { for (int } \mathrm{i}=1 ; \mathrm{i}<\text { a.length; } \mathrm{i}++)\{ \\
& \qquad \begin{array}{l}
\text { int } \mathrm{j}=\mathrm{i} ; \\
\text { int } \mathrm{B}
\end{array}=\mathrm{a}[\mathrm{i}] ; \\
& \text { while }((\mathrm{j}>0) \& \&(\mathrm{a}[\mathrm{j}-1]>B))\{ \\
& \quad \mathrm{a}[\mathrm{j}]=\mathrm{a}[\mathrm{j}-1] ; \\
& \mathrm{j}--;\} \\
& \mathrm{a}[\mathrm{j}]=\mathrm{B} ; \quad
\end{aligned}
$$

Code Representation of an Algorithm

Pros:

- Runs on computers
- Precise and succinct

Cons:

- I am not a computer
- I need a higher level of intuition.
- Prone to bugs
- Language dependent

Two Key Types of Algorithms

- Iterative Algorithms
- Recursive Algorithms

Iterative Algorithms

Take one step at a time

 towards the final destinationloop (done)
take step
end loop

Loop Invariants

A good way to structure many programs:

- Store the key information you currently know in some data representation.
- In the main loop,
- take a step forward towards destination
- by making a simple change to this data.

The Getting to School Problem

Problem Specification

- Pre condition: location of home and school
- Post condition: Traveled from home to school

General Principle

- Do not worry about the entire computation.
- Take one step at a time!

A Measure of Progress

Safe Locations

- Algorithm specifies from which locations it knows how to step.

Loop Invariant

- "The computation is presently in a safe location."
- May or may not be true.

Defining Algorithm

- From every safe location, define one step towards school.

Take a step

- What is required of this step?

Maintain Loop Invariant

- If the computation is in a safe location, it does not step into an unsafe one.
- Can we be assured that the computation will always be in a safe location?

No. What if it is not initially true?

Establishing Loop Invariant

From the Pre-Conditions on the input instance we must establish the loop invariant.

Maintain Loop Invariant

- Can we be assured that the computation will always be in a safe location?
- By what principle?

Maintain Loop Invariant

- By Induction the computation will always be in a safe location.

Ending The Algorithm

- Define Exit Condition
- Termination: With sufficient progress, the exit condition will be met.
- When we exit, we know
- exit condition is true
- loop invariant is true
from these we must establish the post conditions.

\&

Designing an Algorithm

Define Problem	Define Loop Invariants	Define Measure of Progress
Define Step	Define Exit Condition	Maintain Loop Inv
Make Progress	Initial Conditions 21	Ending

Simple Example

Insertion Sort Algorithm

Code Representation of an Algorithm

```
class InsertionSortAlgorithm extends SortAlgorithm {
    void sort(int a[]) throws Exception {
    for (int i = 1; i < a.length; i++) {
        int j = i;
        int B = a[i];
        while ((j>0) && (a[j-1]>B)) {
        a[j] = a[j-1];
        j--; }
    a[j] = B;
    }}

\section*{Higher Level Abstract View Representation of an Algorithm}


\section*{Designing an Algorithm}


\section*{Problem Specification}
- Precondition: The input is a list of \(n\) values with the same value possibly repeated.
- Post condition: The output is a list consisting of the same \(n\) values in non-decreasing order.


> 14,23,25,30,31,52,62,79,88,98

\section*{Define Loop Invariant}
- Some subset of the elements are sorted
-The remaining elements are off to the side.


\section*{Defining Measure of Progress}


\section*{Define Step}
- Select arbitrary element from side.
- Insert it where it belongs.


\section*{Making progress while Maintaining the loop invariant}


\section*{Beginning \& Ending}


to school
\(14,23,25,30,31,52,62,79,88,98\)


\section*{Running Time}

Inserting an element into a list of size i takes \(\theta\) (i) time.
\[
\text { Total }=1+2+3+\ldots+n=\theta\left(n^{2}\right)
\]


\title{
Ok \\ I know you knew Insertion Sort
}

But hopefully you are beginning to appreciate
Loop Invariants
for describing algorithms

\section*{Assertions}

\section*{in Algorithms}

\section*{Purpose of Assertions}

\section*{Useful for}
- thinking about algorithms
- developing
- describing
- proving correctness

\section*{Definition of Assertions}

An assertion is a statement about the current state of the data structure that is either true or false.
eg. the amount in your bank account is not negative.

\section*{Definition of Assertions}

It is made at some particular point during the execution of an algorithm.

If it is false, then something has gone wrong in the logic of the algorithm.

\section*{Definition of Assertions}

An assertion is not a task for the algorithm to perform.

It is only a comment that is added for the benefit of the reader.

\section*{Specifying a Computational Problem}

Example of Assertions
- Preconditions: Any assumptions that must be true about the input instance.
- Postconditions: The statement of what must be true when the algorithm/program returns..

\section*{Definition of Correctness}

\section*{<PreCond> \& <code> \(\Rightarrow\) <PostCond>}

If the input meets the preconditions,
then the output must meet the postconditions.

If the input does not meet the preconditions, then nothing is required.

\section*{An Example:}
<assertion \({ }_{0}\) A Sequence of Assertions
if( <condition \({ }_{1}\) ) then
code \(_{\text {<1, true }}\)
else
code \(_{<1 \text {,false> }}\)
end if
<assertion \({ }_{1}\) >
:
<assertion \({ }_{r-1}>\)
if( <condition \({ }_{r}\) ) then code \(_{\text {<r,true> }}\)
else
code \(_{\text {<r,false> }}\)
end if
<assertion> \({ }_{r}\) >

\section*{Definition of Correctness}
\(<\) assertion \(_{0}>\)
any \(<\) conditions \(>\square<\) assertion \(_{\mathrm{r}}>\) code

Must check \(2^{\text {r }}\) different -settings of <conditions> -paths through the code.
Is there a faster way?
<assertion \({ }_{0}>\)
if \(\left(<\right.\) condition \(\left._{1}>\right)\) then code \(_{\text {<1,true> }}\)
else
code \(_{<1, \text { false }}\)
end if
<assertion \({ }_{1}\) >
:
<ass̊ertion \({ }_{r-1}\) >
if( <condition \({ }_{r}>\) ) then code \(_{\text {<r,true> }}\)
else code \(_{\text {<r,false> }}\)
end if
<assertion> \({ }_{r}\) >

\section*{An Example: \\ \\ A Sequence of Assertions} \\ \\ A Sequence of Assertions}

\section*{Step 1}
\(<\) assertion \(_{0}>\)
\(<\) condition \(_{1}>\)
 code \(_{<1 \text {,true }}\)
\(<\) assertion \(_{0}>\)
\(\neg<\) condition \(_{1}>\)
 code \(_{<1 \text {,false }>}\)
<assertion \({ }_{0}\) >
if( <condition \({ }_{1}>\) ) then code \(_{\text {<1, true> }}\)
else
code \(_{<1 \text {,false> }}\)
end if

if( <condition \({ }_{r}\) ) then code \({ }_{\text {<r,true> }}\)
else
code \(_{<r, \text { false> }}\)
end if
<assertion \({ }_{r}\) >

\section*{An Example: \\ A Sequence of Assertions}

\section*{Step 2}
\(<\) assertion \(_{1}>\)
\(<\) condition \(_{2}>\) code \(_{<2, \text { true }}\)
\(<\) assertion \(_{1}>\)
\(\neg<\) condition \(_{2}>\)
 code \(_{<2 \text {,false }>}\)

\section*{An Example:}
<assertion \({ }_{0}\) >
if( <condition \({ }_{1}>\) ) then code \(_{\text {<1, true> }}\)
else
code \(_{\text {<1,false> }}\)
end if
<assertion \({ }_{1}>\)
\(\vdots\)
<assertion \({ }_{r-1}>\)
if \(\left(\right.\) <condition \(_{r}>\) ) then code \(_{\text {<r,true> }}\)
else code \(_{\text {<r,false> }}\) end if
<assertion> \({ }_{r}\) >
\(<\) assertion \(_{\text {r- }}>\)
\(<\) condition \(_{r}>\) code \(_{<\mathrm{r}, \text { true }}>\)
\(<\) assertion \(_{\text {r- }}>\)
\(\neg<\) condition \(_{\mathrm{r}}>\) code \(_{<\text {r,false }}>\)

\section*{Step r}


\(<\) assertion \(_{\mathrm{r}}>\)

\section*{A Sequence of Assertions}
<assertion \({ }_{0}\) >
if( <condition \({ }_{1}>\) ) then
code \(_{\text {<1,true> }}\)
else
code \(_{<1 \text {,false }}\)
end if

\section*{Step r}
\(<\) assertion \(_{\mathrm{r}-1}>\)
\(<\) condition \(_{\mathrm{r}}>\)
code \(_{<\text {r,true }}\)
<assertion \({ }_{1}>\)
\(\vdots\)
<assertion \({ }_{r-1}>\)
if \((\) <condition \(\gg\) ) then code \(_{\text {<r,true> }}\)
else
code \(_{<r, \text { false> }}\)
end if
<assertion> \({ }^{\text {> }}\)

\(<\) assertion \(_{\text {r- }}>\)
\(\neg<\) condition \(_{\mathrm{r}}>\)

\(<\) assertion \(_{\mathrm{r}}>\) code \(_{<\text {r,false }}>\)

\section*{Another Example: A Loop}

\section*{<preCond>}
codeA
loop

\section*{<loop-invariant>} exit when <exit Cond> codeB
endloop
Type of Algorithm:
- Iterative

Type of Assertion:
- Loop Invariants
codeC
<postCond>

\title{
Iterative Algorithms Loop Invariants
}

\section*{<preCond>}
codeA
loop

\section*{<loop-invariant>} exit when <exit codeB
endloop
codeC
<postCond>

\section*{Iterative Algorithms Loop Invariants}
<preCond>
codeA
loop

\section*{<loop-invariant>}
exit when <exit Cond> Definition of Correctness codeB endloop
codeC
<postCond>


\author{
How is this proved?
}

\section*{Iterative Algorithms Loop Invariants}

\section*{<preCond>}
codeA
loop
<loop-invariant> exit when <exit Cond> codeB

\section*{Definition of Correctness}
endloop
codeC
<postCond>


The computation may go around the loop an arbitrary number of times.

Is there a faster way?

\section*{Iterative Algorithms Loop Invariants}

\section*{<preCond>}
codeA
loop

\section*{<loop-invariant>}
exit when <exit Cond>
Step 0 codeB
endloop
codeC
<postCond>
<preCond>
codeA

\section*{Iterative Algorithms Loop Invariants}

\section*{codeA \\ loop}
<preCond>

\section*{<loop-invariant>}
exit when <exit Cond> Step 1 \(\begin{array}{ll}\begin{array}{c}\text { CodeB } \\ \text { endloop } \\ \text { codeC }\end{array} & \begin{array}{l}\text { <loop-invariant> } \\ \text {-<exit Cond> } \\ \text { codeB }\end{array}\end{array}\) <loop-invariant
<postCond>

\section*{Iterative Algorithms Loop Invariants}

\section*{<preCond> \\ codeA \\ loop}
<logp-invariant>


\section*{Iterative Algorithms Loop Invariants}

\section*{<preCond> \\ codeA \\ loop}
<loop-invariant>


\section*{Iterative Algorithms Loop Invariants}
<preCond>
codeA
loop
endloop
codeC
<postCond>

Step i
<loop-invariant>
«exit Cond» \(\square\) <loop-invariant codeB

All these steps are the same and therefore only need be done once!

\section*{Iterative Algorithms Loop Invariants}

\section*{codeA \\ loop}
<preCond>
<loop-invariant>
exit when zexit Cond> Last Step
codeB endloop
<loop-invariant>
<exit Cond>
\(\square\) <postCond> codeC

\section*{Partial Correctness}

Establishing Loop Invariant

<preCond>
codeA


Maintaining Loop Invariant

<loop-invariant>
-eexit Cond>
codeB


Clean up loose ends

<loop-invariant>
<exit Cond> codeC


Proves that IF the program terminates then it works
\[
\text { <PreCond }>\&<\text { code }>56 \text { PostCond }>
\]

\title{
Algorithm Termination
}

\section*{Measure of progress}


\section*{Algorithm Correctness}

\section*{Partial Correctness \\ + Termination}


\section*{Correctness}

\section*{Designing Loop Invariants}

Coming up with the loop invariant is the hardest part of designing an algorithm.

It requires practice, perseverance, and insight.


\section*{Yet from it \\ the rest of the algorithm follows easily}

\section*{Don't start coding}

\section*{You must design a working algorithm first.}


Exemplification:
Try solving the problem on small input examples.


\section*{Start with Small Steps}

What basic steps might you follow to make some kind of progress towards the answer?

Describe or draw a picture of what the data structure might look like after a number of these steps.


\section*{Picture from the Middle}

\section*{Leap into the middle of the algorithm.}

\section*{What would you like your data structure to look like when you are half done?}


\section*{Ask for 100\%}

\section*{Pretend that a genie has granted your wish.}
- You are now in the middle of your computation and your dream loop invariant is true.


\section*{Ask for 100\%}

\section*{Maintain the Loop Invariant:}
- From here, are you able to take some computational steps that will make progress while maintaining the loop invariant?


\section*{Ask for 100\%}
- If you can maintain the loop invariant, great.
- If not,
- Too Weak: If your loop invariant is too weak, then the genie has not provided you with everything you need to move on.
- Too Strong: If your loop invariant is too strong, then you will not be able to establish it initially or maintain it.

\section*{Differentiating between Iterations}
\(\mathrm{x}=\mathrm{x}+2\)
- Meaningful as code
- False as a mathematical statement
\(x^{\prime}=x_{i}=\) value at the beginning of the iteration
\(x^{\prime \prime}=x_{i+1}=\) new value after going around the loop one more time.
\(x^{\prime \prime}=x^{\prime}+2\)
- Meaningful as a mathematical statement

\title{
Loop Invariants \\ for \\ Iterative Algorithms
}

Three

\author{
Search Examples
}

\section*{Define Problem: Binary Search}
- PreConditions
- Key 25
- Sorted List
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 3 & 5 & 6 & 13 & 18 & 21 & 21 & 25 & 36 & 43 & 49 & 51 & 53 & 60 & 72 & 74 & 83 & 88 & 91 & 95 \\
\hline
\end{tabular}
- PostConditions
- Find key in list (if there).
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 3 & 5 & 6 & 13 & 18 & 21 & 21 & 25 & 36 & 43 & 49 & 51 & 53 & 60 & 72 & 74 & 83 & 88 & 91 & 95 \\
\hline
\end{tabular}

\section*{Define Loop Invariant}
- Maintain a sublist.
- If the key is contained in the original list, then the key is contained in the sublist.
key 25
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 3 & 5 & 6 & 13 & 18 & 21 & 21 & 25 & 36 & 43 & 49 & 51 & 53 & 60 & 72 & 74 & 83 & 88 & 91 & 95 \\
\hline
\end{tabular}

\section*{Define Step}
- Make Progress
- Maintain Loop Invariant

key 25
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 3 & 5 & 6 & 13 & 18 & 21 & 21 & 25 & 36 & 43 & 49 & 51 & 53 & 60 & 72 & 74 & 83 & 88 & 91 & 95 \\
\hline
\end{tabular}

\section*{Define Step}
- Cut sublist in half.
- Determine which half the key would be in.
- Keep that half.


\section*{Define Step}
- It is faster not to check if the middle element is the key.
- Simply continue.


\section*{Make Progress}
- The size of the list becomes smaller.



\section*{Initial Conditions}
key 25
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 3 & 5 & 6 & 13 & 18 & 21 & 21 & 25 & 36 & 43 & 49 & 51 & 53 & 60 & 72 & 74 & 83 & 88 & 91 & 95 \\
\hline
\end{tabular}
- The sublist is the entire original list.

- If the key is contained in the original list,
then the key is contained in the sublist.

\section*{Ending Algorithm}

- If the key is contained in the original list,
then the key is contained in the sublist.
- Sublist contains one element.
- If the key is contained in the original list, then the key is at this location.

\section*{If key not in original list}
- If the key is contained in the original list, then the key is contained in the sublist.
- Loop invariant true, even if the key is not in the list.
101011
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 3 & 5 & 6 & 13 & 18 & 21 & 21 & 25 & 36 & 43 & 49 & 51 & 53 & 60 & 72 & 74 & 83 & 88 & 91 & 95 \\
\hline
\end{tabular}
- If the key is contained in the original list, then the key is at this location.
- Conclusion still solves the problem.
Simply check this one location for the key.

\section*{Running Time}

The sublist is of size \(n, n / 2, n / 4, n / 8, \ldots, 1\)
Each step \(\theta\) (1) time.
Total \(=\theta(\log n)\)


\section*{BinarySearch(A[1..n],key)}
<precondition»: A[1..n] is sorted in non-decreasing order
<postcondition>: If key is in A[1..n], algorithm returns its location
\(p=1, q=n\)
while \(q>p\)
< loop-invariant>: If key is in A[1..n], then key is in A[p..q]
\(\operatorname{mid}=\left\lfloor\frac{p+q}{2}\right\rfloor\)
if key \(\leq A[\) mid \(]\)
\(q=\) mid
else
\[
p=m i d+1
\]
end
end
if key \(=A[p]\)
return( \(p\) )
else
return("Key not in list")
end

\section*{Algorithm Definition Completed}
\begin{tabular}{|c|c|c|}
\hline Define Problem & Define Loop Invariants & Define Measure of Progress \\
\hline Define Step & Define Exit Condition & Maintain Loop Inv \\
\hline Make Progress & \begin{tabular}{l}
Initial Conditions \\
80
\end{tabular} & Ending \\
\hline
\end{tabular}

\section*{BinarySearch(A[1..n],key)}
<precondition»: A[1..n] is sorted in non-decreasing order
<postcondition>: If key is in A[1..n], algorithm returns its location
\(p=1, q=n\)
while \(q>p\)
< loop-invariant>: If key is in A[1..n], then key is in A[p..q]
\(\operatorname{mid}=\left\lfloor\frac{p+q}{2}\right\rfloor\)
if key \(\leq A[\) mid \(]\)
\(q=\) mid
else
\[
p=m i d+1
\]
end
end
if key \(=A[p]\)
return( \(p\) )
else
return("Key not in list")
end

\section*{Simple, right?}
- Although the concept is simple, binary search is notoriously easy to get wrong.
- Why is this?


\section*{The Devil in the Details}
- The basic idea behind binary search is easy to grasp.
- It is then easy to write pseudocode that works for a 'typical' case.
- Unfortunately, it is equally easy to write pseudocode that fails on the boundary conditions.

\section*{The Devil in the Details}

\author{
if key \(\leq A[\) mid \(]\) \\ \(q=\mathrm{mid}\) \\ else \\ \(p=m i d+1\) \\ end
}


What condition will break the loop invariant?

\section*{The Devil in the Details}


Code: key \(\geq A[\) mid \(] \rightarrow\) select right half Bug!!

\section*{The Devil in the Details}
\begin{tabular}{lr} 
if key \(\leq A[\mathrm{mid}]\) & if key \(<A[\mathrm{mid}]\) \\
\(q=\) mid & \(q=\operatorname{mid}-1\) \\
else & else \\
\(\quad p=\) mid +1 & \(p=\) mid \\
end & end
\end{tabular}

OK
OK


Not OK!!

\section*{The Devil in the Details}
\[
\operatorname{mid}=\left\lfloor\frac{p+q}{2}\right\rfloor \quad \text { or } \quad \operatorname{mid}=\left\lceil\frac{p+q}{2}\right\rceil
\]


Shouldn't matter, right? Select mid \(=\left\lceil\frac{p+q}{2}\right\rceil\)

\section*{The Devil in the Details}


\section*{The Devil in the Details}


\section*{The Devil in the Details}


If key \(\leq\) mid, \(\quad\) If key \(>\) mid, then key is in then key is in left half. right half.

\section*{The Devil in the Details}
\begin{tabular}{ll}
\(\operatorname{mid}=\left|\frac{p+q}{2}\right|\) & mid \(=\left[\frac{p+q}{2}\right\rceil\) \\
if key \(\leq A[\mathrm{mid}]\) & if key<A[mid \(]\) \\
\(q=\) mid & \(q=\) mid -1 \\
else & else \\
\(\quad p=\) mid +1 & \(p=\) mid \\
end & end
\end{tabular}

OK
\(\operatorname{mid}=\left\lceil\frac{p+q}{2}\right\rceil\)
if key < \(A[\mathrm{mid}]\)
\[
q=\operatorname{mid}-1
\]
else
end
OK


Not OK!!

\section*{How Many Possible Algorithms?}
\[
\begin{aligned}
& \operatorname{mid}=\left|\frac{p+q}{2}\right| \\
& \text { if key } \leq A[\mathrm{mid}] \\
& q=\text { or mid }=\left[\left.\frac{p+q}{2} \right\rvert\, \text { or } \mathrm{mey}<A[\mathrm{mid}]\right. \text { ? } \\
& \text { else } \\
& \quad p=\text { mid }+1 \\
& \text { end } \quad \text { or } q=\text { mid }-1 \\
& \text { else } \\
& \text { end } p=\text { mid }
\end{aligned}
\]

\section*{Alternative Algorithm: Less Efficient but More Clear}
```

BinarySearch(A[1..n],Key)
<precondition>: A[1..n] is sorted in non-decreasing order
<postcondition>: If key is in A[1..n], algorithm returns its location
p=1,q=n
while q>p
<loop-invariant>: If key is in A[1..n], then key is in A[p..q]
mid =
frac{p+q}{2}}
if key = A[mid]
return(mid)
elseif key < A[mid]
q=mid -1
else
p=mid +1
end
end
if key = A[p]
return(p)
else
return("Key not in list")
end

```

\section*{Moral}
- Use the loop invariant method to think about algorithms.
- Be careful with your definitions.
- Be sure that the loop invariant is always maintained.
- Be sure progress is always made.
- Having checked the 'typical' cases, pay particular attention to boundary conditions and the end game.

\title{
Loop Invariants for \\ Iterative Algorithms
}

A Second
Search Example:
The Binary Search Tree

\section*{Define Problem: Binary Search Tree}
- PreConditions
- Key 25
- A binary search tree.


\section*{Binary Search Tree}

All nodes in left subtree \(\leq\) Any node \(\leq\) All nodes in right subtree


\section*{Define Loop Invariant}
- Maintain a sub-tree.
- If the key is contained in the original tree, then the key is contained in the sub-tree.


\section*{Define Step}
- Cut sub-tree in half.
- Determine which half the key would be in.
- Keep that half.


If key \(<\) root, If key \(=\) root, If key \(>\) root, then key is
in left half. then key is then key is found in right \({ }_{99}\) alf.

\section*{Algorithm Definition Completed}
\begin{tabular}{|c|c|c|}
\hline Define Problem & Define Loop Invariants & Define Measure of Progress \\
\hline Define Step & Define Exit Condition & Maintain Loop Inv \\
\hline Make Progress & \begin{tabular}{l}
Initial Conditions \\
100
\end{tabular} & Ending \\
\hline
\end{tabular}

Card Trick


\title{
Loop Invariants \\ for \\ Iterative Algorithms
}

A Third
Search Example:
A Card Trick


\section*{Loop Invariant: The selected card is one of these.}



\section*{Loop Invariant: The selected card is one of these.}


\section*{Selected column is placed in the middle}


\section*{I will rearrange the cards}


\section*{Relax Loop Invariant: I will remember the same about each column.}



\section*{Loop Invariant: The selected card is one of these.}


\section*{Selected column is placed in the middle}


\section*{I will rearrange the cards}



\section*{Loop Invariant: The selected card is one of these.}


\section*{Selected column is placed in the middle}



\section*{Ternary Search}
- Loop Invariant: selected card in central subset of cards
\[
\begin{aligned}
& \text { Size of subset }=\left\lceil n / 3^{i-1}\right\rceil \\
& \text { where } \\
& n=\text { total number of cards } \\
& i=\text { iteration index }
\end{aligned}
\]
- How many iterations are required to guarantee success?

\title{
Loop Invariants for \\ Iterative Algorithms
}

A Fourth Example:
Partitioning
(Not a search problem:
can be used for sorting, e.g., Quicksort)

\section*{The "Partitioning" Problem}

\section*{Input:}


\section*{Output:}


Problem: Partition a list into a set of small values and a set of large values.

\section*{Precise Specification}

Precondition: \(\boldsymbol{A}[p \ldots r]\) is an arbitrary list of values. \(x=\boldsymbol{A}[r]\) is the pivot.


Postcondition: \(A\) is rearranged such that \(A[p \ldots q-1] \leq A[q]=x \leq A[q+1 \ldots r]\) for some \(q\).


\section*{Loop Invariant}
- 3 subsets are maintained
- One containing values less


\section*{Loop invariant:}
1. All entries in \(A[p \ldots i]\) are \(\leq\) pivot.
2. All entries in \(A[i+1 \ldots j-1]\) are \(>\) pivot.
3. \(A[r]=\) pivot.

\section*{Maintaining Loop Invariant}
- Consider element at location j
- If greater than pivot, incorporate into '> set' by incrementing j.

- If less than or equal to pivot, incorporate into ' \(\leq\) set' by swapping with element at location \(i+1\) and incrementing both i and j .


\section*{Maintaining Loop Invariant}
\(\operatorname{Partition}(A, p, r)\)
\(1 x \leftarrow A[r]\)
\(2 \quad i \leftarrow p-1\)
3 for \(j \leftarrow p\) to \(r-1\)
do if \(A[j] \leq x\)
then \(i \leftarrow i+1\)

exchange \(A[i] \leftrightarrow A[j]\)
7 exchange \(A[i+1] \leftrightarrow A[r]\)
8 return \(i+1\)

Loop invariant:
1. All entries in \(A[p \ldots i]\) are \(\leq\) pivot.

3. \(A[r]=\) pivot.

\section*{Establishing Loop Invariant}

Loop invariant:
1. All entries in \(A[p \ldots i]\) are \(\leq\) pivot.
2. All entries in \(A[i+1 \ldots j-1]\) are \(>\) pivot.

3. \(A[r]=\) pivot.

\section*{Establishing Postcondition}
\(\operatorname{Partition}(A, p, r)\)
\(1 x \leftarrow A[r]\)
\(2 \quad i \leftarrow p-1\)
3 for \(j \leftarrow p\) to \(r-1\)
4 do if \(A[j] \leq x\)
\(5 \quad\) then \(i \leftarrow i+1\)
\(6 \quad\) exchange \(A[i] \leftrightarrow A[j]\)
7 exchange \(A[i+1] \leftrightarrow A[r]\)
8 return \(i+1\)


Loop invariant:
1. All entries in \(A[p \ldots i]\) are \(\leq\) pivot.
2. All entries in \(A[i+1 \ldots j-1]\) are \(>\) pivot.
3. \(A[r]=\) pivot.

\section*{Establishing Postcondition}

Partition \((A, p, r)\)
\(1 x \leftarrow A[r]\)
\(2 \quad i \leftarrow p-1\)
3 for \(j \leftarrow p\) to \(r-1\)
do if \(A[j] \leq x\)
then \(i \leftarrow i+1\)
exchange \(A[i] \leftrightarrow A[j]\)
7 exchange \(A[i+1] \leftrightarrow A[r]\)
8 return \(i+1\)


\section*{An Example}


\section*{Running Time}

Each iteration takes \(\theta(1)\) time \(\rightarrow\) Total \(=\theta(n)\)

or


\title{
More Examples of Iterative Algorithms
}

Using Constraints on Input to Achieve Linear-
Time Sorting

\section*{Recall: InsertionSort}

Insertion-Sort ( \(A\) )
1 for \(j \leftarrow 2\) to length \([A]\)
2 do \(k e y \leftarrow A[j]\)
\(\triangleright\) Insert \(A[j]\) into the sorted sequence \(A[1 \ldots j-1]\).
\(i \leftarrow j-1\)
while \(i>0\) and \(A[i]>\) key
do \(A[i+1] \leftarrow A[i]\)
\(i \leftarrow i-1\)
\(A[i+1] \leftarrow\) key
cost times
\(\begin{array}{ll}c_{1} & n \\ c_{2} & n-1\end{array}\)
\(0 \quad n-1\)
\(c_{4} \quad n-1\)
\(c_{5} \quad \sum_{j=2}^{n} t_{j}\)
\(c_{6}\)
\(c_{7}\)
\(c_{8}\)
\(\sum_{j=2}^{n}\left(t_{j}-1\right)\)
\(\sum_{j=2}^{n}\left(t_{j}-1\right)\)
\(n-1\)

Worst case (reverse order): \(t_{j}=j: \sum_{j=2}^{n} j=\frac{n(n+1)}{2}-1 \rightarrow T(n) \in \theta\left(n^{2}\right)\)

\section*{Recall: MergeSort}


\section*{Comparison Sorts}
- InsertionSort and MergeSort are examples of (stable) Comparison Sort algorithms.
- QuickSort is another example we will study shortly.
- Comparison Sort algorithms sort the input by successive comparison of pairs of input elements.
- Comparison Sort algorithms are very general: they make no assumptions about the values of the input elements.

\section*{Comparison Sorts}

InsertionSort is \(\theta\left(n^{2}\right)\).
MergeSort is \(\theta(n \log n)\).
Can we do better?

\section*{Comparison Sort: Decision Trees}
- Example: Sorting a 3-element array A[1..3]


\section*{Comparison Sort}
- Worst-case time is equal to the height of the binary decision tree.
- The height of the tree is the log of the number of leaves.
- The leaves of the tree represent all possible permutations of the input. How many are there?
\(\log (n!) \in \Omega(n \log n)\)
Thus MergeSort is asymptotically optimal.

\section*{Linear Sorts?}

Comparison sorts are very general, but are \(\Omega(n \log n)\)
Faster sorting may be possible if we can constrain the nature of the input.

\section*{Example 1. Counting Sort}
- Counting Sort applies when the elements to be sorted come from a finite (and preferably small) set.
- For example, the elements to be sorted are integers in the range [0...k-1], for some fixed integer \(k\).
- We can then create an array \(\mathrm{V}[0 \ldots \mathrm{k}-1]\) and use it to count the number of elements with each value [0...k-1].
- Then each input element can be placed in exactly the right place in the output array in constant time.

\section*{Counting Sort}
\begin{tabular}{l} 
Input: \\
\\
Output: \\
\hline 0
\end{tabular} 0
- Input: N records with integer keys between [0...k-1].
- Output: Stable sorted keys.
- Algorithm:
- Count frequency of each key value to determine transition locations
- Go through the records in order putting them where they go.

\section*{CountingSort}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Input: & & 0 & 0 & 1 & 3 & & & 3 & 1 & 0 & 2 & & 0 & 1 & 1 & 2 & 2 & 2 & & 1 \\
\hline Output: & 0 & 0 & 0 & 0 & 0 & 1 & 1 & & (1) & 1 & 1 & & 1 & & & & & & & \\
\hline Index: & 0 & 1 & 2 & & 4 & 5 & 6 & 7 & 8 & 9 & 10 & & 12 & 13 & 131 & & & & & \\
\hline
\end{tabular}

Stable sort: If two keys are the same, their order does not change.
Thus the \(4^{\text {th }}\) record in input with digit 1 must be the \(4^{\text {th }}\) record in output with digit 1 .

It belongs at output index 8, because 8 records go before it ie, 5 records with a smaller digit \& 3 records with the same digit

Count These!

\section*{CountingSort}

Input:


\(N\) records. Time to count? \(\Theta(\mathrm{N})\)

\section*{CountingSort}

Input:
Output:
Index:
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 0 & 0 & 1 & 3 & 1 & 1 & 3 & 1 & 0 & 2 & 1 & 0 & 1 & 1 & 2 & 2 & 1 & 0 \\
\hline & & & & & & & & & & & & & & & & & & \\
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 \\
\hline
\end{tabular}

Value v:
\# of records with digit v : \# of records with digit < v:

N records, k different values. Time to count?

\(\Theta(\mathrm{k})\)

\section*{CountingSort}

\section*{Input:
Output:}

\# of records with digit < v: \(-0 \quad \triangle_{5} \quad 14\)
\(=\) location of first record with digit v .

\section*{CountingSort}


Algorithm: Go through the records in order putting them where they go.

\section*{Loop Invariant}
- The first \(i-1\) keys have been placed in the correct locations in the output array
- The auxiliary data structure \(v\) indicates the location at which to place the \(i^{\text {th }}\) key for each possible key value from [1..k-1].

\section*{CountingSort}


Algorithm: Go through the records in order putting them where they go.

\section*{CountingSort}


Algorithm: Go through the records in order putting them where they go.

\section*{CountingSort}


Algorithm: Go through the records in order putting them where they go.

\section*{CountingSort}


Algorithm: Go through the records in order putting them where they go.

\section*{CountingSort}


Algorithm: Go through the records in order putting them where they go.

\section*{CountingSort}


Algorithm: Go through the records in order putting them where they go.

\section*{CountingSort}


Algorithm: Go through the records in order putting them where they go.

\section*{CountingSort}


Algorithm: Go through the records in order putting them where they go.

\section*{CountingSort}


Algorithm: Go through the records in order putting them where they go.

\section*{CountingSort}


Algorithm: Go through the records in order putting them where they go.

\section*{CountingSort}


Algorithm: Go through the records in order putting them where they go.

\section*{CountingSort}


Algorithm: Go through the records in order putting them where they go.

\section*{CountingSort}


Algorithm: Go through the records in order putting them where they go.

\section*{CountingSort}


Tatrad \(=\Theta(\mathrm{N} \nsucc \mathrm{k})\)

\section*{Example 2. RadixSort}

\section*{Input:}
- A of stack of \(N\) punch cards.
- Each card contains digits.
- Each digit between [0...k-1]

Output:
- Sorted cards.

Digit Sort:
- Select one digit
- Separate cards into k piles based on selected digit (e.g., Counting Sort). 243

Stable sort: If two cards are the same for that digit, their order does not change.

\section*{RadixSort}
\begin{tabular}{ll}
344 & \\
125 & \\
333 & Sort wrt which \\
134 & digit first? \\
224 & \\
334 & The most \\
143 & significant. \\
225 & \\
325 & \\
243 &
\end{tabular}


Sort wrt which digit Second?

The next most significant.

All meaning in first sort lost.

\section*{RadixSort}
\begin{tabular}{|c|c|c|c|c|}
\hline 344 & & 3313 & & 224 \\
\hline 125 & & 143 & & 125 \\
\hline 333 & Sort wrt which & 243 & Sort wrt which & 225 \\
\hline 134 & digit first? & 344 & digit Second? & 325 \\
\hline 224 & & 134 & & 333 \\
\hline 334 & The least & 224 & The next least & 134 \\
\hline 143 & significant. & 334 & significant. & 334 \\
\hline 225 & & 125 & & 143 \\
\hline 325 & & 225 & & 243 \\
\hline 243 & & 325 & & 344 \\
\hline
\end{tabular}

\section*{RadixSort}
\begin{tabular}{|c|c|c|c|c|}
\hline 344 & & 333 & & 224 \\
\hline 125 & \multirow{4}{*}{Sort wrt which digit first?} & 143 & \multirow{4}{*}{Sort wrt which digit Second?} & 125 \\
\hline 333 & & 243 & & 225 \\
\hline 134 & & 344 & & 325 \\
\hline 224 & & 134 & & 333 \\
\hline 334 & \multirow[t]{5}{*}{The least significant.} & 224 & \multirow[t]{5}{*}{The next least significant.} & 134 \\
\hline 143 & & 334 & & 334 \\
\hline 225 & & 125 & & 143 \\
\hline 325 & & 225 & & 243 \\
\hline 243 & & 325 & & 344 \\
\hline
\end{tabular}

\section*{RadixSort}


\section*{RadixSort}
\begin{tabular}{|c|c|c|c|}
\hline 224 & 1) & 125 & \\
\hline 125 & & 134 & \\
\hline 225 & Is sorted wrt & 143 & Is sorted wrt \\
\hline 325 & first i digits. & & first i+1 digits. \\
\hline 333 & & \[
\begin{array}{ll}
2 & 24 \\
2 & 25
\end{array}
\] & \\
\hline 134 & & & \\
\hline 334 & \(t\) & 243 & These are in the \\
\hline 143 & 2 & 325 & correct order \\
\hline 243 & Sort wrt i+1st & 333 & because was sorted \& \\
\hline 344 & digit. & 334 & stable sort left sorted \\
\hline & & 344 & \\
\hline
\end{tabular}

\section*{Loop Invariant}
- The keys have been correctly stable-sorted with respect to the \(i-1\) least-significant digits.

\section*{Running Time}
```

RADIX-SORT (A, d)
for $i \leftarrow 1$ to d
do use a stable sort to sort array A on digit i

```

Running time is \(\Theta(d(n+k))\)
Where
\(d=\#\) of digits in each number
\(n=\#\) of elements to be sorted
\(k=\#\) of possible values for each digit

\section*{Example 3. Bucket Sort}
- Applicable if input is constrained to finite interval, e.g., [0...1).
- If input is random and uniformly distributed, expected run time is \(\Theta(n)\).

\section*{Bucket Sort} insert \(A[i]\) into list \(B[\lfloor n \cdot A[i]\rfloor]\)


\section*{Loop Invariants}
- Loop 1
- The first \(i-1\) keys have been correctly placed into buckets of width \(1 / n\).
- Loop 2
- The keys within each of the first \(i-1\) buckets have been correctly stable-sorted.

\section*{PseudoCode}

Bucket-Sort \((A, n)\)
for \(i \leftarrow 1\) to \(n\)
do insert \(A[i]\) into list \(B[\lfloor n \cdot A[i]\rfloor] \quad-\Theta(1)\)
for \(i \leftarrow 0\) to \(n-1\)
do sort list \(B[i]\) with insertion sort \(-\Theta(1) \times n\)
concatenate lists \(B[0], B[1], \ldots, B[n-1] \longleftarrow \Theta(n)\) return the concatenated lists
\(\Theta(n)\)

\section*{Examples of Iterative Algorithms}
- Binary Search
- Partitioning
- Insertion Sort
- Counting Sort
- Radix Sort
- Bucket Sort
-Which can be made stable?
- Which sort in place?
-How about MergeSort?

\section*{End of Iterative Algorithms}```

