
Central Algorithmic Techniques 

Iterative Algorithms 
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Code  
Representation of an Algorithm 

   class InsertionSortAlgorithm extends SortAlgorithm { 

    void sort(int a[]) throws Exception { 

 for (int i = 1; i < a.length; i++) { 

     int j = i; 

     int B = a[i]; 

     while ((j > 0) && (a[j-1] > B)) { 

                             a[j] = a[j-1]; 

                             j--;  } 

     a[j] = B; 

                   }}         

Pros and Cons? 
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Code  
Representation of an Algorithm 

•  Runs on computers 

•  Precise and succinct 

•  I am not a computer 

•  I need a higher level of 
intuition. 

•  Prone to bugs 

•  Language dependent 

Pros: Cons: 
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Two Key Types of Algorithms 

•  Iterative Algorithms 

•  Recursive Algorithms 
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Iterative Algorithms 

Take one step at a time 

 towards the final destination 

loop (done) 

       take step 

end loop 
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Loop Invariants 

A good way to structure many programs: 
–  Store the key information  you currently know in some 

data representation. 

–  In the main loop,  
•  take a step forward towards destination 

•  by making a simple change to this data. 
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The Getting to School Problem 
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Problem Specification 
•  Pre condition: location of home and school 

•  Post condition: Traveled from home to school 
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General Principle  
•  Do not worry about the entire computation. 

•  Take one step at a time! 
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A Measure of Progress  

79 km  

to school 

75 km  

to school 
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•  Algorithm specifies from which locations 
it  knows how to step. 

Safe Locations 
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•  “The computation is presently in a safe location.” 
•  May or may not be true. 

Loop Invariant 
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Defining Algorithm 
•  From every safe location, 
define one step towards school. 
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Take a step  
•  What is required of this step? 
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•  Can we be assured that the computation 
will always be in a safe location? 

•  If the computation is in a safe location, 
it does not step into an unsafe one. 

Maintain Loop Invariant 

No. What if it is not initially true? 
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From the Pre-Conditions on the input instance 
we must establish the loop invariant. 

Establishing Loop Invariant 
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Maintain Loop Invariant 

•  Can we be assured that the 
computation will always be 
in a safe location? 

•  By what principle? 
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Maintain Loop Invariant 
•  By Induction the computation will 
always be in a safe location. 
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Ending The Algorithm 
•  Define Exit Condition 

•  Termination: With sufficient progress,  

     the exit condition will be met. 

•  When we exit, we know 
–  exit condition is true 

–  loop invariant is true 

    from these we must establish   

    the post conditions. 

Exit 

Exit 

0 km Exit 
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Let’s Recap 
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Designing an Algorithm  
Define Problem Define Loop Invariants Define Measure of 

Progress 

Define Step Define Exit Condition Maintain Loop Inv 

Make Progress Initial Conditions Ending 

km∞

79 km  

to school 

Exit 

Exit 

79 km 75 km 

Exit 

Exit 

0 km Exit 



Simple Example 

Insertion Sort Algorithm 
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Code  
Representation of an Algorithm 

   class InsertionSortAlgorithm extends SortAlgorithm { 

    void sort(int a[]) throws Exception { 

 for (int i = 1; i < a.length; i++) { 

     int j = i; 

     int B = a[i]; 

     while ((j > 0) && (a[j-1] > B)) { 

                             a[j] = a[j-1]; 

                             j--;  } 

     a[j] = B; 

                   }}         
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Higher Level Abstract View 
Representation of an Algorithm 

9 km  

5 km  
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Designing an Algorithm  
Define Problem Define Loop Invariants Define Measure of 

Progress 

Define Step Define Exit Condition Maintain Loop Inv 

Make Progress Initial Conditions Ending 

km∞

79 km  

to school 

Exit 

Exit 

79 km 75 km 

Exit 

Exit 

0 km Exit 
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Problem Specification 
•  Precondition:  The input is a list of n values 
with the same value possibly repeated. 

•  Post condition: The output is a list consisting 
of the same n values in non-decreasing order. 

88 14 
98 25 

62 

52 

79 

30 
23 

31 14,23,25,30,31,52,62,79,88,98 
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88 14 

98 
25 62 

52 

79 

30 
23 

31 14,23,25,30,31,52,62,79,88,98 

14 

98 
25 62 

79 

30 
23,31,52,88 

•  Some subset of the elements are sorted 

• The remaining elements are off to the side. 

Define Loop Invariant 
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Defining Measure of Progress 

14 

98 
25 62 

79 

30 
23,31,52,88 

6 elements 

to school 
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Define Step 

•  Select arbitrary element from side. 

•  Insert it where it belongs. 

98 
25 62 

79 

23,31,52,88 

14 

98 
25 

79 

30 
23,31,52,62,88 

14 30 
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Making progress while Maintaining the 
loop invariant 

98 
25 62 

79 

23,31,52,88 

14 

98 
25 

79 

30 
23,31,52,62,88 

14 30 

79 km 75 km 

5 elements 

to school 

6 elements 

to school 

Exit 

Sorted sublist 
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88 14 

98 
25 62 

52 

79 

30 
23 

31 

88 14 

98 
25 62 

52 

79 

30 
23 

31 n elements 

to school 

14,23,25,30,31,52,62,79,88,98 

14,23,25,30,31,52,62,79,88,98 
0 elements 

to school 

Beginning &  
Ending 

km∞ Exit 0 km Exit 
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Running Time  

Inserting an element into a list of size i 
takes θ(i) time.  

Total = 1+2+3+…+n = θ(n2)  

98 
25 62 

79 

23,31,52,88 

14 

98 
25 

79 

30 
23,31,52,62,88 

14 30 
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Ok 
I know you knew Insertion Sort 

But hopefully you are beginning to appreciate  

Loop Invariants 

for describing algorithms 

 



Assertions 

in Algorithms 
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Purpose of Assertions 

Useful for 
–  thinking about algorithms 

–  developing 

–  describing 

–  proving correctness 
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Definition of Assertions 

An assertion is a statement about the 
current state of the data structure that is 

either true or false.  
 

eg. the amount in your bank account is not 
negative. 
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Definition of Assertions 

It is made at some particular point during the 
execution of an algorithm.  

If it is false, then something has gone wrong in the 
logic of the algorithm.  
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Definition of Assertions 

An assertion is not a task for the algorithm to 
perform.  

It is only a comment that is added for the 
benefit of the reader. 
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Specifying a Computational Problem 

Example of Assertions 

•  Preconditions: Any assumptions that must be 
true about the input instance. 

•  Postconditions: The statement of what must 
be true when the algorithm/program returns.. 
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Definition of Correctness 

<PreCond> & <code> ⇒ <PostCond>    

 

If the input meets the preconditions,  

then the output must meet the postconditions.  
 

If the input does not meet the preconditions, then 
nothing is required. 
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An Example: 
A Sequence of Assertions      <assertion0>  

     if( <condition1> ) then  

         code<1,true> 

     else  

         code<1,false> 

     end if  

     <assertion1>  

 

    <assertionr-1>  

     if( <conditionr> ) then  

         code<r,true> 

     else  

         code<r,false> 

     end if  

     <assertionr>  

 

      

…
 

<assertion0> 
any <conditions> 
code 

<assertionr> 

How is this proved? 

Definition of Correctness 

Must check 2r different  
• settings of <conditions> 
• paths through the code. 

Is there a faster way? 
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An Example: 
A Sequence of Assertions      <assertion0>  

     if( <condition1> ) then  

         code<1,true> 

     else  

         code<1,false> 

     end if  

     <assertion1>  

 

    <assertionr-1>  

     if( <conditionr> ) then  

         code<r,true> 

     else  

         code<r,false> 

     end if  

     <assertionr>  

 

      

…
 

Step 1 
<assertion0> 
<condition1> 
code<1,true> 

<assertion1> 

<assertion0> 
¬<condition1> 
code<1,false> 

<assertion1> 
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An Example: 
A Sequence of Assertions      <assertion0>  

     if( <condition1> ) then  

         code<1,true> 

     else  

         code<1,false> 

     end if  

     <assertion1>  

 

    <assertionr-1>  

     if( <conditionr> ) then  

         code<r,true> 

     else  

         code<r,false> 

     end if  

     <assertionr>  

 

      

…
 

Step 2 
<assertion1> 
<condition2> 
code<2,true> 

<assertion2> 

<assertion1> 
¬<condition2> 
code<2,false> 

<assertion2> 
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An Example: 
A Sequence of Assertions      <assertion0>  

     if( <condition1> ) then  

         code<1,true> 

     else  

         code<1,false> 

     end if  

     <assertion1>  

 

    <assertionr-1>  

     if( <conditionr> ) then  

         code<r,true> 

     else  

         code<r,false> 

     end if  

     <assertionr>  

 

      

…
 

Step r 
<assertionr-1> 
<conditionr> 
code<r,true> 

<assertionr> 

<assertionr-1> 
¬<conditionr> 
code<r,false> 

<assertionr> 
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A Sequence of Assertions 
     <assertion0>  
     if( <condition1> ) then  

         code<1,true> 

     else  

         code<1,false> 

     end if  

     <assertion1>  

 

    <assertionr-1>  

     if( <conditionr> ) then  

         code<r,true> 

     else  

         code<r,false> 

     end if  

     <assertionr>  

 

      

Step r 
<assertionr-1> 
<conditionr> 
code<r,true> 

<assertionr> 

<assertionr-1> 
¬<conditionr> 
code<r,false> 

<assertionr> 

…
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Another Example: 
A Loop 

<preCond>           
codeA   
loop   
      <loop-invariant> 
      exit when <exit Cond> 
      codeB 
endloop  
codeC 
<postCond> 
 

Type of Algorithm:  
•  Iterative 

Type of Assertion: 
•  Loop Invariants 
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<preCond>           
codeA   
loop   
      <loop-invariant> 
      exit when <exit Cond> 
      codeB 
endloop  
codeC 
<postCond> 
 

Definition of Correctness? 

Iterative Algorithms  
Loop Invariants  
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<preCond>           
codeA   
loop   
      <loop-invariant> 
      exit when <exit Cond> 
      codeB 
endloop  
codeC 
<postCond> 
 

Definition of Correctness 

<preCond> 
any <conditions> 
code 

<postCond> 

How is this proved? 

Iterative Algorithms  
Loop Invariants  
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<preCond>           
codeA   
loop   
      <loop-invariant> 
      exit when <exit Cond> 
      codeB 
endloop  
codeC 
<postCond> 
 

The computation may go around  
the loop an arbitrary number of times. 

<preCond> 
any <conditions> 
code 

<postCond> 

Is there a faster way? 

Iterative Algorithms  
Loop Invariants  

Definition of Correctness 
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<preCond>           
codeA   
loop   
      <loop-invariant> 
      exit when <exit Cond> 
      codeB 
endloop  
codeC 
<postCond> 
 

Step 0 

<preCond> 
codeA 

<loop-invariant> 

Iterative Algorithms  
Loop Invariants  
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<preCond>           
codeA   
loop   
      <loop-invariant> 
      exit when <exit Cond> 
      codeB 
endloop  
codeC 
<postCond> 
 

Step 1 
<loop-invariant> 
¬<exit Cond> 
codeB 

<loop-invariant> 
 

Iterative Algorithms  
Loop Invariants  
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<preCond>           
codeA   
loop   
      <loop-invariant> 
      exit when <exit Cond> 
      codeB 
endloop  
codeC 
<postCond> 
 

Step 2 
<loop-invariant> 
¬<exit Cond> 
codeB 

<loop-invariant> 
 

Iterative Algorithms  
Loop Invariants  
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<preCond>           
codeA   
loop   
      <loop-invariant> 
      exit when <exit Cond> 
      codeB 
endloop  
codeC 
<postCond> 
 

Step 3 
<loop-invariant> 
¬<exit Cond> 
codeB 

<loop-invariant> 
 

Iterative Algorithms  
Loop Invariants  
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<preCond>           
codeA   
loop   
      <loop-invariant> 
      exit when <exit Cond> 
      codeB 
endloop  
codeC 
<postCond> 
 

Step i 
<loop-invariant> 
¬<exit Cond> 
codeB 

<loop-invariant> 
 

Iterative Algorithms  
Loop Invariants  

All these steps are the same 
and therefore only need be done once! 
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<preCond>           
codeA   
loop   
      <loop-invariant> 
      exit when <exit Cond> 
      codeB 
endloop 
codeC 
<postCond> 
 

Last Step 
<loop-invariant> 
<exit Cond> 
codeC 

<postCond> 
 

Iterative Algorithms  
Loop Invariants  
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Partial Correctness 

Proves that IF the program terminates then it works  
<PreCond> & <code> ⇒ <PostCond>  

<loop-invariant> 
<exit Cond> 
codeC 

<postCond> 
 

Clean up loose ends 
 

<loop-invariant> 
¬<exit Cond> 
codeB 

<loop-invariant> 
 

Maintaining Loop Invariant 

<preCond> 
codeA 

<loop-invariant> 

Establishing Loop Invariant 
 

Exit 

Exit 
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Algorithm Termination 

km∞

79 km 75 km 

Measure of progress 

0 km 
Exit 
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Algorithm Correctness 

Partial Correctness 
 + Termination Correctness 
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Designing Loop Invariants 

Coming up with the loop invariant is the hardest part of 
designing an algorithm.  

It requires practice, perseverance, and insight.  

Yet from it 
the rest of the algorithm 

follows easily 
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Don’t start coding 

You must design a working algorithm first. 
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Exemplification: 
Try solving the problem  

on small input examples. 
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Start with Small Steps 

What basic steps might you follow to make some kind of 
progress towards the answer?  

Describe or draw a picture of what the data structure might 
look like after a number of these steps. 
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Picture from the Middle 

Leap into the middle of the algorithm. 

  

What would you like your data structure to look like 
when you are half done? 
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Ask for 100%  

Pretend that a genie has granted your wish. 
–  You are now in the middle of your computation and your 

dream loop invariant is true.  
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Ask for 100%  

Maintain the Loop Invariant: 
–   From here, are you able to take some computational steps that 

will make progress while maintaining the loop invariant?   
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Ask for 100%  

•  If you can maintain the loop invariant, great.  
•  If not,  

–  Too Weak: If your loop invariant is too weak, then the genie has 
not provided you with everything you need to move on.  

–  Too Strong: If your loop invariant is too strong, then you will not 
be able to establish it initially or maintain it.   
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Differentiating between Iterations 

x=x+2  
–  Meaningful as code 

–  False as a mathematical statement 

 
x’ = xi = value at the beginning of the iteration  

x’’ = xi+1 = new value after going around the loop one more time.  
x'' = x'+2 

–  Meaningful as a mathematical statement 

 



Loop Invariants  
for 

Iterative Algorithms 

Three 

Search Examples 
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Define Problem: Binary Search 

•  PreConditions 
–  Key       25 

–  Sorted List 

•  PostConditions 
–  Find key in list (if there). 

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95 

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95 
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Define Loop Invariant 

•  Maintain a sublist. 

•  If the key is contained in the original list, then the key is 
contained in the sublist. 

 

key 25 

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95 
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Define Step 

•  Make Progress 

•  Maintain Loop Invariant 

key 25 

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95 
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Define Step 

•  Cut sublist in half. 

•  Determine which half the key would be in. 

•  Keep that half. 

key 25 

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95 

If key ≤ mid, 
then key is in 
left half. 

If key > mid, 
then key is in 
right half. 

mid 
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Define Step 

•  It is faster not to check if the middle element is the key. 

•  Simply continue. 

key 43 

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95 

If key ≤ mid, 
then key is in 
left half. 

If key > mid, 
then key is in 
right half. 
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Make Progress 

•  The size of the list becomes smaller. 

 
3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95 

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95 

79 km 

75 km 

79 km 75 km 

Exit 
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Initial Conditions 
km∞

key 25 

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95 

•  If the key is contained in the 
original list,  

   then the key is contained in the 
sublist. 

•  The sublist is the 
entire  original list. 

n km 
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Ending Algorithm 

•  If the key is contained in the 
original list,  

   then the key is contained in the 
sublist. 

•  Sublist contains one element. 

Exit 

Exit 

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95 

0 km 

•  If the key is 
contained in the 
original list, 

    then the key is at 
this location. 

key 25 
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If key not in original list 

•  If the key is contained in the 
original list,  

   then the key is contained in the 
sublist. 

•  Loop invariant true, 
even if the key is not 
in the list. 

•  If the key is contained in 
the original list, then the 
key is at this location. 

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95 

key 24 

•  Conclusion still solves the 
problem. 

     Simply check this one location 
for the key. 
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Running Time  

The sublist is of size n, n/2, n/4, n/8,…,1 
Each step θ(1) time. 

Total = θ(log n)  

key 25 

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95 

If key ≤ mid, 
then key is in 
left half. 

If key > mid, 
then key is in 
right half. 
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<precondition>:  A[1..n] is sorted in non-decreasing order
<postcondition>: If  is in A[1..n], algorithm returns

1,  
 its location

loop-invariant>: If  is 

BinarySea

in 

rch(A[1..n],

whil

)

e 
p q

key

key
q p

e

n

k y

<

>

= =

if  [ ]

els

2

1

return( )

return("Key n

A[1..n], then

e

end
end
if [ ]

end

  is in A[p..

ot in list")

q]
p qmid

q mid

p mi

key A m

key

id

key A p

e

d

p
lse

≤

+⎢ ⎥= ⎢ ⎥⎣ ⎦

=

= +

=



80 

Algorithm Definition Completed 
Define Problem Define Loop Invariants Define Measure of 

Progress 

Define Step Define Exit Condition Maintain Loop Inv 

Make Progress Initial Conditions Ending 

km∞

79 km  

to school 

Exit 

Exit 

79 km 75 km 

Exit 

Exit 

0 km Exit 
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<precondition>:  A[1..n] is sorted in non-decreasing order
<postcondition>: If  is in A[1..n], algorithm returns

1,  
 its location

loop-invariant>: If  is 

BinarySea

in 

rch(A[1..n],

whil

)

e 
p q

key

key
q p

e

n

k y

<

>

= =

if  [ ]

els

2

1

return( )

return("Key n

A[1..n], then

e

end
end
if [ ]

end

  is in A[p..

ot in list")

q]
p qmid

q mid

p mi

key A m

key

id

key A p

e

d

p
lse

≤

+⎢ ⎥= ⎢ ⎥⎣ ⎦

=

= +

=
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Simple, right? 

•  Although the concept is simple, binary search is 
notoriously easy to get wrong. 

•  Why is this? 
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The Devil in the Details 

•  The basic idea behind binary search is easy to grasp. 

•  It is then easy to write pseudocode that works for a 
‘typical’ case. 

•  Unfortunately, it is equally easy to write pseudocode that 
fails on the boundary conditions. 
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1

if  [ ]

else

end

q mid

p

key A mid

mid

=

=

≤

+

The Devil in the Details 

1

if  [ ]

else

end

q mid

p

key A mid

mid

=

=

<

+
or 

What condition will break the loop invariant? 
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The Devil in the Details 

key 36 

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95 

mid 

sC eod lek cey t A[m rige hid] t  lf: ha≥ →

Bug!! 
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1

if  [ ]

else

end

q mid

p

key A mid

mid

=

=

≤

+

The Devil in the Details 

1

if  [ ]

else

end

q mid

p

key A mid

mid

=

=

<

+

if  < [ ]

else

end

1q mid

p

key A mid

mid

= −

=

OK OK Not OK!! 
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key 25 

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95 

The Devil in the Details 

mid  
2
+⎢ ⎥= ⎢ ⎥⎣ ⎦

p q mid  
2
+⎡ ⎤= ⎢ ⎥⎢ ⎥

p q
or 

Shouldn’t matter, right? Select mid  
2

p q+⎡ ⎤= ⎢ ⎥⎢ ⎥
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6 74 

The Devil in the Details 

key 25 

95 91 88 83 72 60 53 51 49 43 36 25 21 21 18 13 5 3 

If key ≤ mid, 
then key is in 
left half. 

If key > mid, 
then key is in 
right half. 

mid 
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25 18 74 

The Devil in the Details 

key 25 

95 91 88 83 72 60 53 51 49 43 36 21 21 13 6 5 3 

If key ≤ mid, 
then key is in 
left half. 

If key > mid, 
then key is in 
right half. 

mid 
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25 13 74 

The Devil in the Details 

key 25 

95 91 88 83 72 60 53 51 49 43 36 21 21 18 6 5 3 

If key ≤ mid, 
then key is in 
left half. 

If key > mid, 
then key is in 
right half. 

• Another bug! 
No progress 
toward goal: 

Loops Forever! mid 

79 km 75 km 

Exit 
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if  [

mid  

]
2

1
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The Devil in the Details 

if  [
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end

key A mid
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=

OK OK Not OK!! 
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if  [

mid  

]
2

1
else

end

key A mi

p q

q mid
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d
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How Many Possible Algorithms? 

midr 
2

o ? p q+⎡ ⎤= ⎢ ⎥⎢ ⎥

if  < [  or ?]key A mid

else
o

end

1r q mid
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<precondition>:  A[1..n] is sorted in non-decreasing order
<postcondition>: If  is in A[1..n], algorithm returns

1,  
 its location

loop-invariant>: If  is 

BinarySea

in 

rch(A[1..n],
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e 
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q mid
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p mid

p

+⎢ ⎥= ⎢ ⎥⎣ ⎦

= −

= +

=

Alternative Algorithm:  Less Efficient but More Clear 
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Moral 

•  Use the loop invariant method to think about algorithms. 

•  Be careful with your definitions. 

•  Be sure that the loop invariant is always maintained. 

•  Be sure progress is always made. 

•  Having checked the ‘typical’ cases, pay particular 
attention to boundary conditions and the end game. 



Loop Invariants  
for 

Iterative Algorithms 

A Second 

Search Example: 

The Binary Search Tree 
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38 

25 

17 

4 21 

31 

28 35 

51 

42 

40 49 

63 

55 71 

Define Problem: Binary Search Tree 

•  PreConditions 
– Key       25 
– A binary search tree. 

–  PostConditions 
– Find key in BST (if there). 
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38 

25 

17 

4 21 

31 

28 35 

51 

42 

40 49 

63 

55 71 

Binary Search Tree 

All nodes in left subtree  ≤  Any node  ≤ All nodes in right subtree 
 

≤ ≤ 
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Define Loop Invariant 
•  Maintain a sub-tree. 

•  If the key is contained in the original tree, then the key 
is contained in the sub-tree. 

 

key 17 
38 

25 

17 

4 21 

31 

28 35 

51 

42 

40 49 

63 

55 71 
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Define Step 
•  Cut sub-tree in half. 
•  Determine which half the key would be in. 

•  Keep that half. 

 

key 17 
38 

25 

17 

4 21 

31 

28 35 

51 

42 

40 49 

63 

55 71 

If key < root, 
then key is  
in left half. 

If key > root, 
then key is  
in right half. 

If key = root, 
then key is  
found 
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Algorithm Definition Completed 
Define Problem Define Loop Invariants Define Measure of 

Progress 

Define Step Define Exit Condition Maintain Loop Inv 

Make Progress Initial Conditions Ending 

km∞

79 km  

to school 

Exit 

Exit 

79 km 75 km 

Exit 

Exit 

0 km Exit 
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•  A volunteer, please. 

Card Trick 



Loop Invariants  
for 

Iterative Algorithms 

A Third 

Search Example: 

A Card Trick 
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Pick a Card 

Done 
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Loop Invariant: 
The selected card is one 

of  these. 
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Which 

column? 

left 
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Loop Invariant: 
The selected card is one 

of  these. 
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Selected column is placed 
in the middle  
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I will rearrange the cards 
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Relax Loop Invariant: 
I will remember the same 

about each column. 
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Which 

column? 

right 
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Loop Invariant: 
The selected card is one 

of  these. 
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Selected column is placed 
in the middle  
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I will rearrange the cards 
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Which 

column? 

left 
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Loop Invariant: 
The selected card is one 

of  these. 
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Selected column is placed 
in the middle  
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Here is your 
card. 

Wow! 
 



118 

Ternary Search 

•  How many iterations are required to guarantee 
success? 

•  Loop Invariant:  selected card in central subset of             
cards 

1Size of subset = / 3

where
total number of cards

iteration index

in

n
i

−⎡ ⎤⎢ ⎥

=

=



Loop Invariants  
for 

Iterative Algorithms 

A Fourth Example: 
Partitioning 

(Not a search problem:   
can be used for sorting, e.g., Quicksort) 
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The “Partitioning” Problem 

88 14 
98 25 

62 

52 

79 

30 
23 

31 

Input: 

14 

25 
30 

23 31 

88 98 
62 

79 
≤ 52 ≤ 

Output: 
x=52 

Problem:  Partition a list into a set of small values and a set of large values. 
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Precise Specification 

 [ ... ] is an arbitrary list of values.  [ ] is the pivoPrecondit .i ton: A p r x A r=

p r 

 is rearranged such that [ ... 1] [ ] [ 1... ]
for some q.
Postcondition: A A p q A q x A q r− ≤ = ≤ +

p r q 
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•  3 subsets are maintained 
–  One containing values less 

than or equal to the pivot 

–  One containing values 
greater than the pivot 

–  One containing values yet 
to be processed 

Loop Invariant 
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Maintaining Loop Invariant 

•  Consider element at location j 

–  If greater than pivot, incorporate into 
‘> set’ by  incrementing j. 

–  If less than or equal to pivot, 
incorporate into ‘≤ set’ by swapping 
with element at location i+1 and 
incrementing both i and j. 

–  Measure of progress:  size of unprocessed set. 
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Maintaining Loop Invariant 
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Establishing Loop Invariant 
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Establishing Postcondition 

 on exitj=

Exhaustive on exit 
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Establishing Postcondition 
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An Example 
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Running Time  
Each iteration takes θ(1) time Total = θ(n)  

or 



More Examples of Iterative Algorithms 

Using Constraints on Input to Achieve Linear-
Time Sorting  



131 

Recall:  InsertionSort 

2

2

( 1)Worst case (reverse order): :    1 ( ) ( )
2

n

j
j

n nt j j T n nθ
=

+
= = − → ∈∑



132 

Recall:  MergeSort 

( ) ( log )T n n nθ∈
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Comparison Sorts 

•  InsertionSort and MergeSort are examples of (stable) 
Comparison Sort algorithms.   

•  QuickSort is another example we will study shortly. 

•  Comparison Sort algorithms sort the input by successive 
comparison of pairs of input elements. 

•  Comparison Sort algorithms are very general:  they 
make no assumptions about the values of the input 
elements. 



134 

Comparison Sorts 

2InsertionSort is ( ).nθ

MergeSort is ( log ).n nθ

Can we do better? 
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Comparison Sort:  Decision Trees 

•  Example:  Sorting a 3-element array A[1..3] 
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Comparison Sort 

•  Worst-case time is equal to the height of the binary 
decision tree. 

•  The height of the tree is the log of the number of leaves. 

•  The leaves of the tree represent all possible 
permutations of the input.  How many are there? 

( )log ! ( log )n n n∈Ω

Thus MergeSort is asymptotically optimal. 
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Linear Sorts? 

Comparison sorts are very general, but are ( log )n nΩ

Faster sorting may be possible if we can constrain the nature of the input.
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Example 1.  Counting Sort 

•  Counting Sort applies when the elements to be sorted 
come from a finite (and preferably small) set. 

•  For example, the elements to be sorted are integers in 
the range [0…k-1], for some fixed integer k. 

•  We can then create an array V[0…k-1] and use it to 
count the number of elements with each value [0…k-1]. 

•  Then each input element can be placed in exactly the 
right place in the output array in constant time. 
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Counting Sort 

•  Input: N records with integer keys between [0…k-1]. 

•  Output: Stable sorted keys. 

•  Algorithm:  
–  Count frequency of each key value to determine transition 

locations 

–  Go through the records in order putting them where they go. 

Input: 
Output: 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 3 3 3 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 
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CountingSort 

Stable sort: If two keys are the same, their order does not change.  

Input: 
Output: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

Thus  the 4th record in input with digit 1 must be  
the 4th record in output with digit 1. 

It belongs at output index 8, because 8 records go before it  

ie, 5 records with a smaller digit & 3 records with the same digit 

0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 3 3 

Count These! 

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 
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CountingSort 

Input: 
Output: 

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 
# of records with digit v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
2 3 9 5 

N records. Time to count? Θ(N) 
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CountingSort 

Input: 
Output: 

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 
# of records with digit v: 

# of records with digit < v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
3 3 9 5 
17 14 5 0 

N records, k different values. Time to count? Θ(k) 
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 
# of records with digit < v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
17 14 5 0 

= location of first record with digit v. 

0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 3 3 
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
17 14 5 0 Location of first record  

with digit v. 

Algorithm: Go through the records in order 
                   putting them where they go. 

1 0 ? 
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Loop Invariant 

•  The first i-1 keys have been placed in the correct 
locations in the output array 

•  The auxiliary data structure v indicates the location at 
which to place the ith key for each possible key value 
from [1..k-1]. 
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
17 14 5 0 Location of next record  

with digit v. 

1 

Algorithm: Go through the records in order 
                   putting them where they go. 
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
17 14 6 0 Location of next record  

with digit v. 

0 

Algorithm: Go through the records in order 
                   putting them where they go. 

1  
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
17 14 6 1 Location of next record  

with digit v. 

0 0 

Algorithm: Go through the records in order 
                   putting them where they go. 

1  
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
17 14 6 2 Location of next record  

with digit v. 

0 1 

Algorithm: Go through the records in order 
                   putting them where they go. 

1  0 
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
17 14 7 2 Location of next record  

with digit v. 

0 1 

Algorithm: Go through the records in order 
                   putting them where they go. 

1  0 3 



151 

CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
18 14 7 2 Location of next record  

with digit v. 

0 1 

Algorithm: Go through the records in order 
                   putting them where they go. 

1  0 1 3 
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
18 14 8 2 Location of next record  

with digit v. 

0 1 

Algorithm: Go through the records in order 
                   putting them where they go. 

1  0 1 3 1 
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
18 14 9 2 Location of next record  

with digit v. 

0 1 

Algorithm: Go through the records in order 
                   putting them where they go. 

1  0 3 3 1 1 
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
19 14 9 2 Location of next record  

with digit v. 

0 1 

Algorithm: Go through the records in order 
                   putting them where they go. 

1  0 1 3 1 1 3 
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
19 14 10 2 Location of next record  

with digit v. 

0 1 

Algorithm: Go through the records in order 
                   putting them where they go. 

1  0 0 1 1 1 3 3 
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
19 14 10 3 Location of next record  

with digit v. 

0 1 

Algorithm: Go through the records in order 
                   putting them where they go. 

1  0 2 1 1 1 3 3 0 
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
19 15 10 3 Location of next record  

with digit v. 

0 1 

Algorithm: Go through the records in order 
                   putting them where they go. 

1  0 1 1 1 1 3 3 0 2 
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
19 15 10 3 Location of next record  

with digit v. 

0 1 

Algorithm: Go through the records in order 
                   putting them where they go. 

1  0 1 1 1 1 3 3 0 2 
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
19 17 14 5 Location of next record  

with digit v. 

0 1 1  0 1 1 1 1 3 3 0 2 0 0 1 1 1 2 2 

Θ(N) Time =  Θ(N+k) Total =  
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Input:  

•  A of stack of N punch cards. 
•  Each card contains d digits. 
•  Each digit between [0…k-1] 

Output:  
•  Sorted cards. 

Example 2. RadixSort    344 
125 
333  
134 
224 
334 
143  
225  
325  
243  

Digit Sort:  
•  Select one digit 
•  Separate cards into k piles  
  based on selected digit (e.g., Counting Sort).  

125 
224 
225  
325  

333  
134 
334 

344 
143  
243  

Stable sort: If two cards are the same for that digit,  
their order does not change.  
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RadixSort    

344 
125 
333  
134 
224 
334 
143  
225  
325  
243  

Sort wrt which  
digit first? 

The most  
significant. 

125 
134  
143  
224 
225  
243  
344  
333  
334  
325  

Sort wrt which  
digit Second? 

The next most  
significant. 

125 
224 
225  
325  
134  
333  
334  
143  
243  
344  

All meaning in first sort lost. 



162 

RadixSort    

344 
125 
333  
134 
224 
334 
143  
225  
325  
243  

Sort wrt which  
digit first? 

Sort wrt which  
digit Second? 

The least  
significant. 

333  
143 
243  
344 
134 
224 
334  
125 
225  
325  

The next least  
significant. 

224 
125 
225  
325  
333  
134 
334  
143 
243  
344 
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RadixSort    

344 
125 
333  
134 
224 
334 
143  
225  
325  
243  

Sort wrt which  
digit first? 

Sort wrt which  
digit Second? 

The least  
significant. 

333  
143 
243  
344 
134 
224 
334  
125 
225  
325  

The next least  
significant. 

2 24 
1 25 
2 25  
3 25  
3 33  
1 34 
3 34  
1 43 
2 43  
3 44 
 
 Is sorted wrt least  sig. 2 digits. 
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Sort wrt i+1st  
digit. 

2 24 
1 25 
2 25  
3 25  
3 33  
1 34 
3 34  
1 43 
2 43  
3 44 

Is sorted wrt  
first i digits. 

1 25  
1 34  
1 43  

2 24 
2 25  
2 43 

3 25  
3 33  
3 34  
3 44 

Is sorted wrt  
first i+1 digits. 

i+1 

These are in the  
correct order  
because sorted 
wrt high order digit  

RadixSort     
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Sort wrt i+1st  
digit. 

2 24 
1 25 
2 25  
3 25  
3 33  
1 34 
3 34  
1 43 
2 43  
3 44 

Is sorted wrt  
first i digits. 

1 25  
1 34  
1 43  

2 24 
2 25  
2 43 

3 25  
3 33  
3 34  
3 44 

i+1 

These are in the  
correct order  
because was sorted & 
stable sort left sorted 

Is sorted wrt  
first i+1 digits. 

RadixSort    
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Loop Invariant 

•  The keys have been correctly stable-sorted with respect 
to the i-1 least-significant digits. 
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Running Time 

Running time is ( ( ))
Where

# of digits in each number
 # of elements to be sorted
#  of possible values for each digit

d n k

d
n
k

Θ +

=

=

=



168 

Example 3. Bucket Sort 

•  Applicable if input is constrained to finite interval, e.g., 
[0…1). 

•  If input is random and uniformly distributed, expected 
run time is Θ(n).  
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Bucket Sort 
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Loop Invariants 

•  Loop 1 
–  The first i-1 keys have been correctly placed into buckets of 

width 1/n. 

•  Loop 2 
–  The keys within each of the first i-1 buckets have been correctly 

stable-sorted. 
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PseudoCode 

(1)Θ

(1)Θ
( )nΘ

n×

( )nΘ
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Examples of Iterative Algorithms 

•  Binary Search 

•  Partitioning 

•  Insertion Sort 

•  Counting Sort 

•  Radix Sort 

•  Bucket Sort 

•  Which can be made stable? 

•  Which sort in place? 

•  How about MergeSort? 



End of Iterative Algorithms 


