
Central Algorithmic Techniques

Iterative Algorithms

2

Code
Representation of an Algorithm

 class InsertionSortAlgorithm extends SortAlgorithm {

 void sort(int a[]) throws Exception {

 for (int i = 1; i < a.length; i++) {

 int j = i;

 int B = a[i];

 while ((j > 0) && (a[j-1] > B)) {

 a[j] = a[j-1];

 j--; }

 a[j] = B;

 }}

Pros and Cons?

3

Code
Representation of an Algorithm

•  Runs on computers

•  Precise and succinct

•  I am not a computer

•  I need a higher level of
intuition.

•  Prone to bugs

•  Language dependent

Pros: Cons:

4

Two Key Types of Algorithms

•  Iterative Algorithms

•  Recursive Algorithms

5

Iterative Algorithms

Take one step at a time

 towards the final destination

loop (done)

 take step

end loop

6

Loop Invariants

A good way to structure many programs:
–  Store the key information you currently know in some

data representation.

–  In the main loop,
•  take a step forward towards destination

•  by making a simple change to this data.

7

The Getting to School Problem

8

Problem Specification
•  Pre condition: location of home and school

•  Post condition: Traveled from home to school

9

General Principle
•  Do not worry about the entire computation.

•  Take one step at a time!

10

A Measure of Progress

79 km

to school

75 km

to school

11

•  Algorithm specifies from which locations
it knows how to step.

Safe Locations

12

•  “The computation is presently in a safe location.”
•  May or may not be true.

Loop Invariant

13

Defining Algorithm
•  From every safe location,
define one step towards school.

14

Take a step
•  What is required of this step?

15

•  Can we be assured that the computation
will always be in a safe location?

•  If the computation is in a safe location,
it does not step into an unsafe one.

Maintain Loop Invariant

No. What if it is not initially true?

16

From the Pre-Conditions on the input instance
we must establish the loop invariant.

Establishing Loop Invariant

17

Maintain Loop Invariant

•  Can we be assured that the
computation will always be
in a safe location?

•  By what principle?

18

Maintain Loop Invariant
•  By Induction the computation will
always be in a safe location.

(0)

, ()

, () (1)

S

i S i

i S i S i

⇒ ⎫
⎪
⎪
⇒∀ ⇒⎬

⎪
⎪⇒∀ ⇒ + ⎭

19

Ending The Algorithm
•  Define Exit Condition

•  Termination: With sufficient progress,

 the exit condition will be met.

•  When we exit, we know
–  exit condition is true

–  loop invariant is true

 from these we must establish

 the post conditions.

Exit

Exit

0 km Exit

20

Let’s Recap

21

Designing an Algorithm
Define Problem Define Loop Invariants Define Measure of

Progress

Define Step Define Exit Condition Maintain Loop Inv

Make Progress Initial Conditions Ending

km∞

79 km

to school

Exit

Exit

79 km 75 km

Exit

Exit

0 km Exit

Simple Example

Insertion Sort Algorithm

23

Code
Representation of an Algorithm

 class InsertionSortAlgorithm extends SortAlgorithm {

 void sort(int a[]) throws Exception {

 for (int i = 1; i < a.length; i++) {

 int j = i;

 int B = a[i];

 while ((j > 0) && (a[j-1] > B)) {

 a[j] = a[j-1];

 j--; }

 a[j] = B;

 }}

24

Higher Level Abstract View
Representation of an Algorithm

9 km

5 km

25

Designing an Algorithm
Define Problem Define Loop Invariants Define Measure of

Progress

Define Step Define Exit Condition Maintain Loop Inv

Make Progress Initial Conditions Ending

km∞

79 km

to school

Exit

Exit

79 km 75 km

Exit

Exit

0 km Exit

26

Problem Specification
•  Precondition: The input is a list of n values
with the same value possibly repeated.

•  Post condition: The output is a list consisting
of the same n values in non-decreasing order.

88 14
98 25

62

52

79

30
23

31 14,23,25,30,31,52,62,79,88,98

27

88 14

98
25 62

52

79

30
23

31 14,23,25,30,31,52,62,79,88,98

14

98
25 62

79

30
23,31,52,88

•  Some subset of the elements are sorted

• The remaining elements are off to the side.

Define Loop Invariant

28

Defining Measure of Progress

14

98
25 62

79

30
23,31,52,88

6 elements

to school

29

Define Step

•  Select arbitrary element from side.

•  Insert it where it belongs.

98
25 62

79

23,31,52,88

14

98
25

79

30
23,31,52,62,88

14 30

30

Making progress while Maintaining the
loop invariant

98
25 62

79

23,31,52,88

14

98
25

79

30
23,31,52,62,88

14 30

79 km 75 km

5 elements

to school

6 elements

to school

Exit

Sorted sublist

31

88 14

98
25 62

52

79

30
23

31

88 14

98
25 62

52

79

30
23

31 n elements

to school

14,23,25,30,31,52,62,79,88,98

14,23,25,30,31,52,62,79,88,98
0 elements

to school

Beginning &
Ending

km∞ Exit 0 km Exit

32

Running Time

Inserting an element into a list of size i
takes θ(i) time.

Total = 1+2+3+…+n = θ(n2)

98
25 62

79

23,31,52,88

14

98
25

79

30
23,31,52,62,88

14 30

33

Ok
I know you knew Insertion Sort

But hopefully you are beginning to appreciate

Loop Invariants

for describing algorithms

Assertions

in Algorithms

35

Purpose of Assertions

Useful for
–  thinking about algorithms

–  developing

–  describing

–  proving correctness

36

Definition of Assertions

An assertion is a statement about the
current state of the data structure that is

either true or false.

eg. the amount in your bank account is not
negative.

37

Definition of Assertions

It is made at some particular point during the
execution of an algorithm.

If it is false, then something has gone wrong in the
logic of the algorithm.

38

Definition of Assertions

An assertion is not a task for the algorithm to
perform.

It is only a comment that is added for the
benefit of the reader.

39

Specifying a Computational Problem

Example of Assertions

•  Preconditions: Any assumptions that must be
true about the input instance.

•  Postconditions: The statement of what must
be true when the algorithm/program returns..

40

Definition of Correctness

<PreCond> & <code> ⇒ <PostCond>

If the input meets the preconditions,

then the output must meet the postconditions.

If the input does not meet the preconditions, then
nothing is required.

41

An Example:
A Sequence of Assertions <assertion0>

 if(<condition1>) then

 code<1,true>

 else

 code<1,false>

 end if

 <assertion1>

 <assertionr-1>

 if(<conditionr>) then

 code<r,true>

 else

 code<r,false>

 end if

 <assertionr>

…

<assertion0>
any <conditions>
code

<assertionr>

How is this proved?

Definition of Correctness

Must check 2r different
• settings of <conditions>
• paths through the code.

Is there a faster way?

42

An Example:
A Sequence of Assertions <assertion0>

 if(<condition1>) then

 code<1,true>

 else

 code<1,false>

 end if

 <assertion1>

 <assertionr-1>

 if(<conditionr>) then

 code<r,true>

 else

 code<r,false>

 end if

 <assertionr>

…

Step 1
<assertion0>
<condition1>
code<1,true>

<assertion1>

<assertion0>
¬<condition1>
code<1,false>

<assertion1>

43

An Example:
A Sequence of Assertions <assertion0>

 if(<condition1>) then

 code<1,true>

 else

 code<1,false>

 end if

 <assertion1>

 <assertionr-1>

 if(<conditionr>) then

 code<r,true>

 else

 code<r,false>

 end if

 <assertionr>

…

Step 2
<assertion1>
<condition2>
code<2,true>

<assertion2>

<assertion1>
¬<condition2>
code<2,false>

<assertion2>

44

An Example:
A Sequence of Assertions <assertion0>

 if(<condition1>) then

 code<1,true>

 else

 code<1,false>

 end if

 <assertion1>

 <assertionr-1>

 if(<conditionr>) then

 code<r,true>

 else

 code<r,false>

 end if

 <assertionr>

…

Step r
<assertionr-1>
<conditionr>
code<r,true>

<assertionr>

<assertionr-1>
¬<conditionr>
code<r,false>

<assertionr>

45

A Sequence of Assertions
 <assertion0>
 if(<condition1>) then

 code<1,true>

 else

 code<1,false>

 end if

 <assertion1>

 <assertionr-1>

 if(<conditionr>) then

 code<r,true>

 else

 code<r,false>

 end if

 <assertionr>

Step r
<assertionr-1>
<conditionr>
code<r,true>

<assertionr>

<assertionr-1>
¬<conditionr>
code<r,false>

<assertionr>

…

46

Another Example:
A Loop

<preCond>
codeA
loop
 <loop-invariant>
 exit when <exit Cond>
 codeB
endloop
codeC
<postCond>

Type of Algorithm:
•  Iterative

Type of Assertion:
•  Loop Invariants

47

<preCond>
codeA
loop
 <loop-invariant>
 exit when <exit Cond>
 codeB
endloop
codeC
<postCond>

Definition of Correctness?

Iterative Algorithms
Loop Invariants

48

<preCond>
codeA
loop
 <loop-invariant>
 exit when <exit Cond>
 codeB
endloop
codeC
<postCond>

Definition of Correctness

<preCond>
any <conditions>
code

<postCond>

How is this proved?

Iterative Algorithms
Loop Invariants

49

<preCond>
codeA
loop
 <loop-invariant>
 exit when <exit Cond>
 codeB
endloop
codeC
<postCond>

The computation may go around
the loop an arbitrary number of times.

<preCond>
any <conditions>
code

<postCond>

Is there a faster way?

Iterative Algorithms
Loop Invariants

Definition of Correctness

50

<preCond>
codeA
loop
 <loop-invariant>
 exit when <exit Cond>
 codeB
endloop
codeC
<postCond>

Step 0

<preCond>
codeA

<loop-invariant>

Iterative Algorithms
Loop Invariants

51

<preCond>
codeA
loop
 <loop-invariant>
 exit when <exit Cond>
 codeB
endloop
codeC
<postCond>

Step 1
<loop-invariant>
¬<exit Cond>
codeB

<loop-invariant>

Iterative Algorithms
Loop Invariants

52

<preCond>
codeA
loop
 <loop-invariant>
 exit when <exit Cond>
 codeB
endloop
codeC
<postCond>

Step 2
<loop-invariant>
¬<exit Cond>
codeB

<loop-invariant>

Iterative Algorithms
Loop Invariants

53

<preCond>
codeA
loop
 <loop-invariant>
 exit when <exit Cond>
 codeB
endloop
codeC
<postCond>

Step 3
<loop-invariant>
¬<exit Cond>
codeB

<loop-invariant>

Iterative Algorithms
Loop Invariants

54

<preCond>
codeA
loop
 <loop-invariant>
 exit when <exit Cond>
 codeB
endloop
codeC
<postCond>

Step i
<loop-invariant>
¬<exit Cond>
codeB

<loop-invariant>

Iterative Algorithms
Loop Invariants

All these steps are the same
and therefore only need be done once!

55

<preCond>
codeA
loop
 <loop-invariant>
 exit when <exit Cond>
 codeB
endloop
codeC
<postCond>

Last Step
<loop-invariant>
<exit Cond>
codeC

<postCond>

Iterative Algorithms
Loop Invariants

56

Partial Correctness

Proves that IF the program terminates then it works
<PreCond> & <code> ⇒ <PostCond>

<loop-invariant>
<exit Cond>
codeC

<postCond>

Clean up loose ends

<loop-invariant>
¬<exit Cond>
codeB

<loop-invariant>

Maintaining Loop Invariant

<preCond>
codeA

<loop-invariant>

Establishing Loop Invariant

Exit

Exit

57

Algorithm Termination

km∞

79 km 75 km

Measure of progress

0 km
Exit

58

Algorithm Correctness

Partial Correctness
 + Termination Correctness

59

Designing Loop Invariants

Coming up with the loop invariant is the hardest part of
designing an algorithm.

It requires practice, perseverance, and insight.

Yet from it
the rest of the algorithm

follows easily

60

Don’t start coding

You must design a working algorithm first.

61

Exemplification:
Try solving the problem

on small input examples.

62

Start with Small Steps

What basic steps might you follow to make some kind of
progress towards the answer?

Describe or draw a picture of what the data structure might
look like after a number of these steps.

63

Picture from the Middle

Leap into the middle of the algorithm.

What would you like your data structure to look like
when you are half done?

64

Ask for 100%

Pretend that a genie has granted your wish.
–  You are now in the middle of your computation and your

dream loop invariant is true.

65

Ask for 100%

Maintain the Loop Invariant:
–  From here, are you able to take some computational steps that

will make progress while maintaining the loop invariant?

66

Ask for 100%

•  If you can maintain the loop invariant, great.
•  If not,

–  Too Weak: If your loop invariant is too weak, then the genie has
not provided you with everything you need to move on.

–  Too Strong: If your loop invariant is too strong, then you will not
be able to establish it initially or maintain it.

67

Differentiating between Iterations

x=x+2
–  Meaningful as code

–  False as a mathematical statement

x’ = xi = value at the beginning of the iteration

x’’ = xi+1 = new value after going around the loop one more time.
x'' = x'+2

–  Meaningful as a mathematical statement

Loop Invariants
for

Iterative Algorithms

Three

Search Examples

69

Define Problem: Binary Search

•  PreConditions
–  Key 25

–  Sorted List

•  PostConditions
–  Find key in list (if there).

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

70

Define Loop Invariant

•  Maintain a sublist.

•  If the key is contained in the original list, then the key is
contained in the sublist.

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

71

Define Step

•  Make Progress

•  Maintain Loop Invariant

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

72

Define Step

•  Cut sublist in half.

•  Determine which half the key would be in.

•  Keep that half.

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.

mid

73

Define Step

•  It is faster not to check if the middle element is the key.

•  Simply continue.

key 43

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.

74

Make Progress

•  The size of the list becomes smaller.

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

79 km

75 km

79 km 75 km

Exit

75

Initial Conditions
km∞

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

•  If the key is contained in the
original list,

 then the key is contained in the
sublist.

•  The sublist is the
entire original list.

n km

76

Ending Algorithm

•  If the key is contained in the
original list,

 then the key is contained in the
sublist.

•  Sublist contains one element.

Exit

Exit

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

0 km

•  If the key is
contained in the
original list,

 then the key is at
this location.

key 25

77

If key not in original list

•  If the key is contained in the
original list,

 then the key is contained in the
sublist.

•  Loop invariant true,
even if the key is not
in the list.

•  If the key is contained in
the original list, then the
key is at this location.

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

key 24

•  Conclusion still solves the
problem.

 Simply check this one location
for the key.

78

Running Time

The sublist is of size n, n/2, n/4, n/8,…,1
Each step θ(1) time.

Total = θ(log n)

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.

79

<precondition>: A[1..n] is sorted in non-decreasing order
<postcondition>: If is in A[1..n], algorithm returns

1,
 its location

loop-invariant>: If is

BinarySea

in

rch(A[1..n],

whil

)

e
p q

key

key
q p

e

n

k y

<

>

= =

if []

els

2

1

return()

return("Key n

A[1..n], then

e

end
end
if []

end

 is in A[p..

ot in list")

q]
p qmid

q mid

p mi

key A m

key

id

key A p

e

d

p
lse

≤

+⎢ ⎥= ⎢ ⎥⎣ ⎦

=

= +

=

80

Algorithm Definition Completed
Define Problem Define Loop Invariants Define Measure of

Progress

Define Step Define Exit Condition Maintain Loop Inv

Make Progress Initial Conditions Ending

km∞

79 km

to school

Exit

Exit

79 km 75 km

Exit

Exit

0 km Exit

81

<precondition>: A[1..n] is sorted in non-decreasing order
<postcondition>: If is in A[1..n], algorithm returns

1,
 its location

loop-invariant>: If is

BinarySea

in

rch(A[1..n],

whil

)

e
p q

key

key
q p

e

n

k y

<

>

= =

if []

els

2

1

return()

return("Key n

A[1..n], then

e

end
end
if []

end

 is in A[p..

ot in list")

q]
p qmid

q mid

p mi

key A m

key

id

key A p

e

d

p
lse

≤

+⎢ ⎥= ⎢ ⎥⎣ ⎦

=

= +

=

82

Simple, right?

•  Although the concept is simple, binary search is
notoriously easy to get wrong.

•  Why is this?

83

The Devil in the Details

•  The basic idea behind binary search is easy to grasp.

•  It is then easy to write pseudocode that works for a
‘typical’ case.

•  Unfortunately, it is equally easy to write pseudocode that
fails on the boundary conditions.

84

1

if []

else

end

q mid

p

key A mid

mid

=

=

≤

+

The Devil in the Details

1

if []

else

end

q mid

p

key A mid

mid

=

=

<

+
or

What condition will break the loop invariant?

85

The Devil in the Details

key 36

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

mid

sC eod lek cey t A[m rige hid] t lf: ha≥ →

Bug!!

86

1

if []

else

end

q mid

p

key A mid

mid

=

=

≤

+

The Devil in the Details

1

if []

else

end

q mid

p

key A mid

mid

=

=

<

+

if < []

else

end

1q mid

p

key A mid

mid

= −

=

OK OK Not OK!!

87

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

The Devil in the Details

mid
2
+⎢ ⎥= ⎢ ⎥⎣ ⎦

p q mid
2
+⎡ ⎤= ⎢ ⎥⎢ ⎥

p q
or

Shouldn’t matter, right? Select mid
2

p q+⎡ ⎤= ⎢ ⎥⎢ ⎥

88

6 74

The Devil in the Details

key 25

95 91 88 83 72 60 53 51 49 43 36 25 21 21 18 13 5 3

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.

mid

89

25 18 74

The Devil in the Details

key 25

95 91 88 83 72 60 53 51 49 43 36 21 21 13 6 5 3

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.

mid

90

25 13 74

The Devil in the Details

key 25

95 91 88 83 72 60 53 51 49 43 36 21 21 18 6 5 3

If key ≤ mid,
then key is in
left half.

If key > mid,
then key is in
right half.

• Another bug!
No progress
toward goal:

Loops Forever! mid

79 km 75 km

Exit

91

if [

mid

]
2

1
else

end

key A mi

p q

q mid

p mid

d

+⎢ ⎥= ⎢ ⎥⎣ ⎦

= +

≤

=

The Devil in the Details

if [

mid

]
2

1
else

end

key A mi

p q

q mid

p mid

d

+⎡ ⎤= ⎢ ⎥⎢ ⎥

= +

≤

=

if < [

mid
2

1
]

else

end

key A mid

p q

q mid

p mid

+⎡ ⎤= ⎢ ⎥⎢ ⎥

= −

=

OK OK Not OK!!

92

if [

mid

]
2

1
else

end

key A mi

p q

q mid

p mid

d

+⎢ ⎥= ⎢ ⎥⎣ ⎦

= +

≤

=

How Many Possible Algorithms?

midr
2

o ? p q+⎡ ⎤= ⎢ ⎥⎢ ⎥

if < [or ?]key A mid

else
o

end

1r q mid

p mid

= −

=

93

<precondition>: A[1..n] is sorted in non-decreasing order
<postcondition>: If is in A[1..n], algorithm returns

1,
 its location

loop-invariant>: If is

BinarySea

in

rch(A[1..n],

whil

)

e
p q

key

key
q p

e

n

k y

<

>

= =

2

retur

A[1..n

n(mid)

], then

if = []

elseif <

is

[

 in A[p

]
1

1

return()

return("Key

e

not i

lse

n

..q

end
end
if

 list"

 []

end
)

]

key A mid

key A

p qmid

q mid
mid

key A p

el

key

se

p mid

p

+⎢ ⎥= ⎢ ⎥⎣ ⎦

= −

= +

=

Alternative Algorithm: Less Efficient but More Clear

94

Moral

•  Use the loop invariant method to think about algorithms.

•  Be careful with your definitions.

•  Be sure that the loop invariant is always maintained.

•  Be sure progress is always made.

•  Having checked the ‘typical’ cases, pay particular
attention to boundary conditions and the end game.

Loop Invariants
for

Iterative Algorithms

A Second

Search Example:

The Binary Search Tree

96

38

25

17

4 21

31

28 35

51

42

40 49

63

55 71

Define Problem: Binary Search Tree

•  PreConditions
– Key 25
– A binary search tree.

–  PostConditions
– Find key in BST (if there).

97

38

25

17

4 21

31

28 35

51

42

40 49

63

55 71

Binary Search Tree

All nodes in left subtree ≤ Any node ≤ All nodes in right subtree

≤ ≤

98

Define Loop Invariant
•  Maintain a sub-tree.

•  If the key is contained in the original tree, then the key
is contained in the sub-tree.

key 17
38

25

17

4 21

31

28 35

51

42

40 49

63

55 71

99

Define Step
•  Cut sub-tree in half.
•  Determine which half the key would be in.

•  Keep that half.

key 17
38

25

17

4 21

31

28 35

51

42

40 49

63

55 71

If key < root,
then key is
in left half.

If key > root,
then key is
in right half.

If key = root,
then key is
found

100

Algorithm Definition Completed
Define Problem Define Loop Invariants Define Measure of

Progress

Define Step Define Exit Condition Maintain Loop Inv

Make Progress Initial Conditions Ending

km∞

79 km

to school

Exit

Exit

79 km 75 km

Exit

Exit

0 km Exit

101

•  A volunteer, please.

Card Trick

Loop Invariants
for

Iterative Algorithms

A Third

Search Example:

A Card Trick

103

Pick a Card

Done

104

Loop Invariant:
The selected card is one

of these.

105

Which

column?

left

106

Loop Invariant:
The selected card is one

of these.

107

Selected column is placed
in the middle

108

I will rearrange the cards

109

Relax Loop Invariant:
I will remember the same

about each column.

110

Which

column?

right

111

Loop Invariant:
The selected card is one

of these.

112

Selected column is placed
in the middle

113

I will rearrange the cards

114

Which

column?

left

115

Loop Invariant:
The selected card is one

of these.

116

Selected column is placed
in the middle

117

Here is your
card.

Wow!

118

Ternary Search

•  How many iterations are required to guarantee
success?

•  Loop Invariant: selected card in central subset of
cards

1Size of subset = / 3

where
total number of cards

iteration index

in

n
i

−⎡ ⎤⎢ ⎥

=

=

Loop Invariants
for

Iterative Algorithms

A Fourth Example:
Partitioning

(Not a search problem:
can be used for sorting, e.g., Quicksort)

120

The “Partitioning” Problem

88 14
98 25

62

52

79

30
23

31

Input:

14

25
30

23 31

88 98
62

79
≤ 52 ≤

Output:
x=52

Problem: Partition a list into a set of small values and a set of large values.

121

Precise Specification

 [...] is an arbitrary list of values. [] is the pivoPrecondit .i ton: A p r x A r=

p r

 is rearranged such that [... 1] [] [1...]
for some q.
Postcondition: A A p q A q x A q r− ≤ = ≤ +

p r q

122

•  3 subsets are maintained
–  One containing values less

than or equal to the pivot

–  One containing values
greater than the pivot

–  One containing values yet
to be processed

Loop Invariant

123

Maintaining Loop Invariant

•  Consider element at location j

–  If greater than pivot, incorporate into
‘> set’ by incrementing j.

–  If less than or equal to pivot,
incorporate into ‘≤ set’ by swapping
with element at location i+1 and
incrementing both i and j.

–  Measure of progress: size of unprocessed set.

124

Maintaining Loop Invariant

125

Establishing Loop Invariant

126

Establishing Postcondition

 on exitj=

Exhaustive on exit

127

Establishing Postcondition

128

An Example

129

Running Time
Each iteration takes θ(1) time Total = θ(n)

or

More Examples of Iterative Algorithms

Using Constraints on Input to Achieve Linear-
Time Sorting

131

Recall: InsertionSort

2

2

(1)Worst case (reverse order): : 1 () ()
2

n

j
j

n nt j j T n nθ
=

+
= = − → ∈∑

132

Recall: MergeSort

() (log)T n n nθ∈

133

Comparison Sorts

•  InsertionSort and MergeSort are examples of (stable)
Comparison Sort algorithms.

•  QuickSort is another example we will study shortly.

•  Comparison Sort algorithms sort the input by successive
comparison of pairs of input elements.

•  Comparison Sort algorithms are very general: they
make no assumptions about the values of the input
elements.

134

Comparison Sorts

2InsertionSort is ().nθ

MergeSort is (log).n nθ

Can we do better?

135

Comparison Sort: Decision Trees

•  Example: Sorting a 3-element array A[1..3]

136

Comparison Sort

•  Worst-case time is equal to the height of the binary
decision tree.

•  The height of the tree is the log of the number of leaves.

•  The leaves of the tree represent all possible
permutations of the input. How many are there?

()log ! (log)n n n∈Ω

Thus MergeSort is asymptotically optimal.

137

Linear Sorts?

Comparison sorts are very general, but are (log)n nΩ

Faster sorting may be possible if we can constrain the nature of the input.

138

Example 1. Counting Sort

•  Counting Sort applies when the elements to be sorted
come from a finite (and preferably small) set.

•  For example, the elements to be sorted are integers in
the range [0…k-1], for some fixed integer k.

•  We can then create an array V[0…k-1] and use it to
count the number of elements with each value [0…k-1].

•  Then each input element can be placed in exactly the
right place in the output array in constant time.

139

Counting Sort

•  Input: N records with integer keys between [0…k-1].

•  Output: Stable sorted keys.

•  Algorithm:
–  Count frequency of each key value to determine transition

locations

–  Go through the records in order putting them where they go.

Input:
Output: 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 3 3 3

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

140

CountingSort

Stable sort: If two keys are the same, their order does not change.

Input:
Output:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

Thus the 4th record in input with digit 1 must be
the 4th record in output with digit 1.

It belongs at output index 8, because 8 records go before it

ie, 5 records with a smaller digit & 3 records with the same digit

0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 3 3

Count These!

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

141

CountingSort

Input:
Output:

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:
of records with digit v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
2 3 9 5

N records. Time to count? Θ(N)

142

CountingSort

Input:
Output:

Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:
of records with digit v:

of records with digit < v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
3 3 9 5
17 14 5 0

N records, k different values. Time to count? Θ(k)

143

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:
of records with digit < v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
17 14 5 0

= location of first record with digit v.

0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 3 3

144

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
17 14 5 0 Location of first record

with digit v.

Algorithm: Go through the records in order
 putting them where they go.

1 0 ?

145

Loop Invariant

•  The first i-1 keys have been placed in the correct
locations in the output array

•  The auxiliary data structure v indicates the location at
which to place the ith key for each possible key value
from [1..k-1].

146

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
17 14 5 0 Location of next record

with digit v.

1

Algorithm: Go through the records in order
 putting them where they go.

147

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
17 14 6 0 Location of next record

with digit v.

0

Algorithm: Go through the records in order
 putting them where they go.

1

148

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
17 14 6 1 Location of next record

with digit v.

0 0

Algorithm: Go through the records in order
 putting them where they go.

1

149

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
17 14 6 2 Location of next record

with digit v.

0 1

Algorithm: Go through the records in order
 putting them where they go.

1 0

150

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
17 14 7 2 Location of next record

with digit v.

0 1

Algorithm: Go through the records in order
 putting them where they go.

1 0 3

151

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
18 14 7 2 Location of next record

with digit v.

0 1

Algorithm: Go through the records in order
 putting them where they go.

1 0 1 3

152

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
18 14 8 2 Location of next record

with digit v.

0 1

Algorithm: Go through the records in order
 putting them where they go.

1 0 1 3 1

153

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
18 14 9 2 Location of next record

with digit v.

0 1

Algorithm: Go through the records in order
 putting them where they go.

1 0 3 3 1 1

154

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
19 14 9 2 Location of next record

with digit v.

0 1

Algorithm: Go through the records in order
 putting them where they go.

1 0 1 3 1 1 3

155

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
19 14 10 2 Location of next record

with digit v.

0 1

Algorithm: Go through the records in order
 putting them where they go.

1 0 0 1 1 1 3 3

156

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
19 14 10 3 Location of next record

with digit v.

0 1

Algorithm: Go through the records in order
 putting them where they go.

1 0 2 1 1 1 3 3 0

157

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
19 15 10 3 Location of next record

with digit v.

0 1

Algorithm: Go through the records in order
 putting them where they go.

1 0 1 1 1 1 3 3 0 2

158

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
19 15 10 3 Location of next record

with digit v.

0 1

Algorithm: Go through the records in order
 putting them where they go.

1 0 1 1 1 1 3 3 0 2

159

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
19 17 14 5 Location of next record

with digit v.

0 1 1 0 1 1 1 1 3 3 0 2 0 0 1 1 1 2 2

Θ(N) Time = Θ(N+k) Total =

160

Input:

•  A of stack of N punch cards.
•  Each card contains d digits.
•  Each digit between [0…k-1]

Output:
•  Sorted cards.

Example 2. RadixSort 344
125
333
134
224
334
143
225
325
243

Digit Sort:
•  Select one digit
•  Separate cards into k piles
 based on selected digit (e.g., Counting Sort).

125
224
225
325

333
134
334

344
143
243

Stable sort: If two cards are the same for that digit,
their order does not change.

161

RadixSort

344
125
333
134
224
334
143
225
325
243

Sort wrt which
digit first?

The most
significant.

125
134
143
224
225
243
344
333
334
325

Sort wrt which
digit Second?

The next most
significant.

125
224
225
325
134
333
334
143
243
344

All meaning in first sort lost.

162

RadixSort

344
125
333
134
224
334
143
225
325
243

Sort wrt which
digit first?

Sort wrt which
digit Second?

The least
significant.

333
143
243
344
134
224
334
125
225
325

The next least
significant.

224
125
225
325
333
134
334
143
243
344

163

RadixSort

344
125
333
134
224
334
143
225
325
243

Sort wrt which
digit first?

Sort wrt which
digit Second?

The least
significant.

333
143
243
344
134
224
334
125
225
325

The next least
significant.

2 24
1 25
2 25
3 25
3 33
1 34
3 34
1 43
2 43
3 44

 Is sorted wrt least sig. 2 digits.

164

Sort wrt i+1st
digit.

2 24
1 25
2 25
3 25
3 33
1 34
3 34
1 43
2 43
3 44

Is sorted wrt
first i digits.

1 25
1 34
1 43

2 24
2 25
2 43

3 25
3 33
3 34
3 44

Is sorted wrt
first i+1 digits.

i+1

These are in the
correct order
because sorted
wrt high order digit

RadixSort

165

Sort wrt i+1st
digit.

2 24
1 25
2 25
3 25
3 33
1 34
3 34
1 43
2 43
3 44

Is sorted wrt
first i digits.

1 25
1 34
1 43

2 24
2 25
2 43

3 25
3 33
3 34
3 44

i+1

These are in the
correct order
because was sorted &
stable sort left sorted

Is sorted wrt
first i+1 digits.

RadixSort

166

Loop Invariant

•  The keys have been correctly stable-sorted with respect
to the i-1 least-significant digits.

167

Running Time

Running time is (())
Where

of digits in each number
 # of elements to be sorted
of possible values for each digit

d n k

d
n
k

Θ +

=

=

=

168

Example 3. Bucket Sort

•  Applicable if input is constrained to finite interval, e.g.,
[0…1).

•  If input is random and uniformly distributed, expected
run time is Θ(n).

169

Bucket Sort

170

Loop Invariants

•  Loop 1
–  The first i-1 keys have been correctly placed into buckets of

width 1/n.

•  Loop 2
–  The keys within each of the first i-1 buckets have been correctly

stable-sorted.

171

PseudoCode

(1)Θ

(1)Θ
()nΘ

n×

()nΘ

172

Examples of Iterative Algorithms

•  Binary Search

•  Partitioning

•  Insertion Sort

•  Counting Sort

•  Radix Sort

•  Bucket Sort

•  Which can be made stable?

•  Which sort in place?

•  How about MergeSort?

End of Iterative Algorithms

