
Recursive Algorithms

Introduction

Applications to Numeric Computation

3

Complex Numbers

•  Remember how to multiply 2 complex numbers?

•  (a+bi)(c+di) = [ac –bd] + [ad + bc] i

•  Input: a,b,c,d Output: ac-bd, ad+bc

•  If a real multiplication costs $1 and an addition cost a penny, what is
the cheapest way to obtain the output from the input?

•  Can you do better than $4.02?

4

Johann Carl Friedrich Gauss
(* 30. April 1777 in Braunschweig,
† 23. Februar 1855 in Göttingen)

•  Input: a,b,c,d Output: ac-bd, ad+bc
•  m1 = ac

•  m2 = bd

•  A1 = m1 – m2 = ac-bd
•  m3 = (a+b)(c+d) = ac + ad + bc + bd

•  A2 = m3 – m1 – m2 = ad+bc

Gauss’ Method:

Total Cost?
$3.05!

5

Question

•  The Gauss method saves one multiplication out of four.
It requires 25% less work.

•  Could there be a context where performing 3
multiplications for every 4 provides a more dramatic
savings?

•  Let’s back up a bit.

6

How to add 2 n-bit numbers.

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

+

7

How to add 2 n-bit numbers.

*
*

*

*
*

*
*

*
*

*
*

*
*

*
*
*

*
*

*
*

*
*

*
*

+

8

How to add 2 n-bit numbers.

*
*

*

*
*

*
*

*
*

*
*

*
*
*

*
*
*

*

*
*

*
*

*
*

*
*

+

9

How to add 2 n-bit numbers.

*
*

*

*
*

*
*

*
*

*
*
*

*
*
*

*

*
*
*

*

*
*

*
*

*
*

*
*

+

10

How to add 2 n-bit numbers.

*
*

*

*
*

*
*

*
*
*

*
*
*

*

*
*
*

*

*
*
*

*

*
*

*
*

*
*

*
*

+

11

How to add 2 n-bit numbers.

*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

 *

+
*

*

12

Time complexity of
grade school addition

*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

*
*
*

*

+
*

*

*
*
*

*

On any reasonable
computer adding 3
bits can be done in
constant time.

() ()T n n→ ∈Ο

13

Is there a faster way to add?

•  QUESTION: Is there an algorithm to add two n-bit
numbers whose time grows sub-linearly in n?

14

Any algorithm for addition must read all of
the input bits

–  Suppose there is a mystery algorithm that does not examine
each bit

–  Give the algorithm a pair of numbers. There must be some
unexamined bit position i in one of the numbers

–  If the algorithm returns the wrong answer, we have found a bug

–  If the algorithm is correct, flip the bit at position i and give the
algorithm this new input.

–  The algorithm must return the same answer, which now is
wrong.

15

So any algorithm for addition must
use time at least linear in the size of

the numbers.

Grade school addition is essentially
as good as it can be.

16

How to multiply 2 n-bit numbers.

X
* * * * * * * *
* * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * * * * * * * * * *

n2

17

How to multiply 2 nHow to multiply 2 n--bit numbers.bit numbers.

X
* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * * * * * * * * * *

n2

I get it! The total time
is bounded by cn2.

18

How to multiply 2 n-bit numbers:
Kindergarten Algorithm

a × b = a + a + a + ... + a

b
T(n) = θ(bn)
Fast?

(2)!nn= Θ

19

Grade School Addition: Linear time
Grade School Multiplication: Quadratic time

 Kindergarten Multiplication: Exponential time

of bits in numbers

ti
m

e

End of Lecture 6

21

Neat! We have demonstrated that
multiplication is a harder problem

than addition.

Mathematical confirmation of our
common sense.

22

Don’t jump to conclusions!
We have argued that grade school

multiplication uses more time than grade
school addition. This is a comparison of

the complexity of two algorithms.

To argue that multiplication is an
inherently harder problem than addition
we would have to show that no possible

multiplication algorithm runs in linear
time.

23

Grade School Addition: θ(n) time
Grade School Multiplication: θ(n2) time

Is there a clever algorithm to
multiply two numbers in

linear time?

24

Despite years of research, no one
knows!

25

Is there a faster way to
multiply two numbers than

the way you learned in grade
school?

26

Good question!

27

Recursive Divide And Conquer

•  DIVIDE a problem into smaller subproblems

•  CONQUER them recursively

•  GLUE the answers together so as to obtain the answer
to the larger problem

28

Multiplication of 2 n-bit numbers

•  X =

•  Y =

•  X = a 2n/2 + b Y = c 2n/2 + d

•  XY = ac 2n + (ad+bc) 2n/2 + bd

a b

c d

29

Multiplication of 2 n-bit numbers

•  X =

•  Y =

•  XY = ac 2n + (ad+bc) 2n/2 + bd

a b

c d

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 RETURN

 MULT(a,c) 2n + (MULT(a,d) + MULT(b,c)) 2n/2 + MULT(b,d)

30

Time required by MULT

•  T(n) = time taken by MULT on two n-bit numbers

•  What is T(n)?

31

Recurrence Relation

• T(1) = k for some constant k

• T(n) = 4 T(n/2) + k’ n + k’’ for some constants k’ and k’’

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 RETURN

 MULT(a,c) 2n + (MULT(a,d) + MULT(b,c)) 2n/2 + MULT(b,d)

32

For example

•  T(1) = 1

•  T(n) = 4 T(n/2) + n

•  How do we unravel T(n) so that we can determine its
growth rate?

33

Technique 1: (Substitution)

•  Recurrence:

•  Guess:

•  Proof:

(1) 1
() 4 (/ 2) , 2,4,8
T
T n T n n n

=

= + = K

2(*) () 2T n n n= −

(*) (1) 2 1 1T→ = − =

()2 2

2 2

Now suppose (*) is satisfied for / 2.

(/ 2) 2 / 2 / 2 / 2 / 2
Then by the recurrence relation,

() 4 (/ 2) 2 2 2 .
Thus (*) is also satisfied for n

n

T n n n n n

T n T n n n n n n n

→ = − = −

= + = − + = −

34

T(n)

Technique 2: Recursion Tree

•  T(n) = n + 4 T(n/2)

• T(1) = 1

n

(n/2)

= n

T(n/2) T(n/2) T(n/2) T(n/2)

=

T(1) 1 =

35

n

T(n/2) T(n/2) T(n/2) T(n/2)

T(n) =

36

n

T(n/2) T(n/2) T(n/2)

T(n)
=

n/2

T(n/4) T(n/4) T(n/4) T(n/4)

37

n T(n) =

n/2

T(n/4) T(n/4) T(n/4) T(n/4)

n/2

T(n/4) T(n/4) T(n/4) T(n/4)

n/2

T(n/4) T(n/4) T(n/4) T(n/4)

n/2

T(n/4) T(n/4) T(n/4) T(n/4)

38

n T(n) =

n/2 n/2 n/2 n/2

11111111111111111111111111111111 111111111111111111111111111111111

n/4 n/4 n/4 n/4 n/4 n/4 n/4 n/4 n/4 n/4 n/4 n/4 n/4 n/4 n/4 n/4

39

Level i is the sum of 4i copies of n/2i

1+
1+1+1+1

.

 n/2 + n/2 + n/2 + n/2

n

n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4

0

1

2

i

log n2

40

Level i is the sum of 4i copies of n/2i

1+1

.

n/2 + n/2 + n/2 + n/2

n

n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4

0

1

2

i

log n2

=1⋅n
= 4⋅n/2

= 16⋅n/4

= 4i ⋅n/2i

= 4logn⋅n/2logn

=22logn⋅1=n2

() ()
log

log 1 2 2

0
2 2 1 2 1 2 ()

n
i n

i
n n n n n n n+

=

= − = − = − ∈Θ∑

41

Level i is the sum of 4i copies of n/2i

1+1

.

n/2 + n/2 + n/2 + n/2

n

n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4

0

1

2

i

log n2

=1⋅n
= 4⋅n/2

= 16⋅n/4

= 4i ⋅n/2i

= 4logn⋅n/2logn

=22logn⋅1=n2

2Geometric Increasing - dominated by last term: () (()) ()f n f n n= Θ = Θ∑

42

Divide and Conquer MULT: θ(n2) time
Grade School Multiplication: θ(n2) time

All that work for nothing!

43

MULT revisited

•  MULT calls itself 4 times. Can you see a
way to reduce the number of calls?

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 RETURN

 MULT(a,c) 2n + (MULT(a,d) + MULT(b,c)) 2n/2 + MULT(b,d)

44

Gauss’ Idea: Input: a,b,c,d Output: ac, ad+bc, bd

•  A1 = ac

•  A3 = bd

•  m3 = (a+b)(c+d) = ac + ad + bc + bd

•  A2 = m3 – A1- A3 = ad + bc

45

Gaussified MULT (Karatsuba 1962)

T(n) = 3 T(n/2) + n
(More precisely: T(n) = 2 T(n/2) + T(n/2 + 1) + kn)

MULT(X,Y):

 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN e2n + (MULT(a+b, c+d) – e - f) 2n/2 + f

46

n T(n)
=

n/2

T(n/4) T(n/4) T(n/4) T(n/4)

n/2

T(n/4) T(n/4) T(n/4) T(n/4)

n/2

T(n/4) T(n/4) T(n/4) T(n/4)

n/2

T(n/4) T(n/4) T(n/4) T(n/4)

47

n

T(n/2) T(n/2) T(n/2)

T(n)
=

48

n

T(n/2) T(n/2)

T(n)
=

n/2

T(n/4) T(n/4) T(n/4)

49

n T(n)
=

n/2

T(n/4) T(n/4) T(n/4)

n/2

T(n/4) T(n/4) T(n/4)

n/2

T(n/4) T(n/4) T(n/4)

50

Level i is the sum of 3i copies of n/2i

1+1
+1+1+1

.

 n/2 + n/2 + n/2

n

n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4

0

1

2

i

log n2

51

=1⋅n
= 3⋅n/2

= 9⋅n/4

= 3i ⋅n/2i Level i is the sum of 3i copies of n/2i

1+1

.

n/2 + n/2 + n/2

n

n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4

0

1

2

i

log n2
= 3logn⋅n/2logn

=nlog3⋅1

log3 1.58...Geometric Increasing - dominated by last term: () (()) () ()f n f n n n= Θ = Θ Θ∑ ;

52

Dramatic improvement for large n

Not just a 25% savings!

θ(n2) vs θ(n1.58..)

53

Grade-School Multiplication

X
* * * * * * * *
* * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * * * * * * * * * *

n2

2 2

2

 multiplies + additions
() 2 bit operations

n n
T n n→ ;

54

Gaussified MULT (Karatsuba 1962)

T(n) ≈ 3 T(n/2) + kn
What is k?

MULT(X,Y):

 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN e2n + (MULT(a+b, c+d) – e - f) 2n/2 + f

e.g., k=8

55

Dramatic improvement for large n

Not just a 25% savings!

θ(2n2) vs θ(8n1.58..)

Example:

A networking simulation requires 10 million multiplications of 16-bit integers.

Suppose that each bit operation takes 4 picosec on your machine (realistic).

Grade School Multiplication Time = 2 days 9 hours (do it over the weekend!)

Karatsuba Multiplication Time = 5.4 minutes (just enough time to grab a coffee!)

MATLAB takes 0.07 seconds on my machine (don’t blink!)

56

Multiplication Algorithms

Kindergarten n2n

Grade School n2

Karatsuba n1.58…

Fastest Known
(Schönhage-Strassen algorithm, 1971)

n logn loglogn

57

What a difference a single recursive call makes!

•  What are the underlying principles here?

•  How can we systematically predict which recursive
algorithms are going to save time, and which are not?

Recurrence Relations

T(1) = 1

T(n) = a T(n/b) + f(n)

59

Recurrence Relations
≈ Time of Recursive Program

procedure Eg(int n)

 if(n≤1) then

 put “Hi”
 else

 loop i=1..f(n)

 put “Hi”
 loop i=1..a

 Eg(n/b)

•  Recurrence relations arise
from the timing of recursive
programs.

•  Let T(n) be the # of “Hi”s on
an input of “size” n.

60

Recurrence Relations
≈ Time of Recursive Program

Given size 1, the program outputs T(1)=1 Hi’s.

Given size n, the stackframe outputs f(n) Hi’s.

Recursing on a instances of size n/b generates aT(n/b) “Hi”s.

For a total of T(1) = 1; T(n) = a·T(n/b) + f(n) “Hi”s.

procedure Eg(int n)

 if(n≤1) then

 put “Hi”
 else

 loop i=1..f(n)

 put “Hi”
 loop i=1..a

 Eg(n/b)

61

Technique 1: (Substitution)

•  Recurrence:

•  Guess:

•  Proof:

(1) 1
() 4 (/ 2) , 2,4,8
T
T n T n n n

=

= + = K

2(*) () 2T n n n= −

(*) (1) 2 1 1T→ = − =

()2 2

2 2

Now suppose (*) is satisfied for / 2.

(/ 2) 2 / 2 / 2 / 2 / 2
Then by the recurrence relation,

() 4 (/ 2) 2 2 2 .
Thus (*) is also satisfied for n

n

T n n n n n

T n T n n n n n n n

→ = − = −

= + = − + = −

62

More Generally, and Formally

(1) 1 & () 4 (/2)T T n T n n= = +⎢ ⎥⎣ ⎦
2Hypothesis: () ()T n n= Θ

2
1Suppose that lower bound holds for /2 , i.e., /2 (/2)i c i T i≤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

2 2
1 2 0 0 1 2i.e., , , 0 : , ()c c n n n c n T n c n∃ > ∀ ≥ ≤ ≤

 LowerStep 1. Bound

() 2
1

,

() 4 /

S

2

ubstituti

4 /2

ng

T i T i i c i i= + ≥ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
2

1
14

2
ic i−⎛ ⎞≥ +⎜ ⎟
⎝ ⎠

()= − + +2
14 /4 /2 1/4c i i i

⎡ ⎤= − + +⎣ ⎦
2

1 2 1c i i i 1
1Suppose that
2

c =

⎡ ⎤≥ − + +⎣ ⎦
21Then () 2 1

2
T i i i i = +21 1

2 2
i 21

2
i≥ 2

1c i= Thus lower bound holds for i!

63

To Summarize
2

1If lower bound holds for /2 , i.e., /2 (/2)i c i T i≤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1
1with ,
2

c =

2
1Then lower bound holds for , i.e., ()i c i T i≤

64

Base Case

Does lower bound hold for 1?i =
2 2

1
1 1(1) () 1
2 2

 Yes!c i T i= = ≤ =

By induction, must also hold for 2,3,4,5,...i =

Follow similar process to prove upper bound.

= → =

= → =

= → =

M

e.g.,
1 2,3
2 4,5
3 6,7

i i
i i
i i

65

• Recurrence Relation:

 T(1) = 1 & T(n) = 4T(n/2) + n

• Guess: T(n) = an2 + bn + c

• Verify: Left Hand Side Right Hand Side

 T(1) = a+b+c

 T(n)

= an2 +bn+c

 1

 4T(n/2) + n

= 4 [a (n/2)2 + b (n/2) +c] + n

= an2 +(2b+1)n + 4c

Solving Technique 2
Guess Form and Calculate Coefficients

66

• Recurrence Relation:

 T(1) = 1 & T(n) = 4T(n/2) + n

• Guess: T(n) = an2 + bn + c

• Verify: Left Hand Side Right Hand Side

 T(1) = a+b+c

 T(n)

= an2 +bn+c

 1

 4T(n/2) + n

= 4 [a (n/2)2 + b (n/2) +c] + n

= an2 +(2b+1)n + 4c

Solving Technique 2
Guess Form and Calculate Coefficients

c=4c
 c=0

67

• Recurrence Relation:

 T(1) = 1 & T(n) = 4T(n/2) + n

• Guess: T(n) = an2 +bn + 0

• Verify: Left Hand Side Right Hand Side

 T(1) = a+b+c

 T(n)

= an2 +bn+c

 1

 4T(n/2) + n

= 4 [a (n/2)2 + b (n/2) +c] + n

= an2 +(2b+1)n + 4c

Solving Technique 2
Guess Form and Calculate Coefficients

 b = 2b+1
 b = -1

68

• Recurrence Relation:

 T(1) = 1 & T(n) = 4T(n/2) + n

• Guess: T(n) = an2 - 1n + 0

• Verify: Left Hand Side Right Hand Side

 T(1) = a+b+c

 T(n)

= an2 +bn+c

 1

 4T(n/2) + n

= 4 [a (n/2)2 + b (n/2) +c] + n

= an2 +(2b+1)n + 4c

Solving Technique 2
Guess Form and Calculate Coefficients

a=a

69

• Recurrence Relation:

 T(1) = 1 & T(n) = 4T(n/2) + n

• Guess: T(n) = an2 - 1n + 0

• Verify: Left Hand Side Right Hand Side

 T(1) = a+b+c

 T(n)

= an2 +bn+c

 1

 4T(n/2) + n

= 4 [a (n/2)2 + b (n/2) +c] + n

= an2 +(2b+1)n + 4c

Solving Technique 2
Guess Form and Calculate Coefficients

a+b+c=1
a-1+0=1
a=2

2() 2T n n n→ = −

70

• Recurrence Relation:

 T(1) = 1 & T(n) = aT(n/b) + f(n)

Solving Technique 3
Approximate Form and

Calculate Exponent

which is bigger?

Guess

71

• Recurrence Relation:

 T(1) = 1 & T(n) = aT(n/b) + f(n)

• Guess: aT(n/b) << f(n)

• Simplify: T(n) ≈ f(n)

Solving Technique 3
Calculate Exponent

In this case, the answer is easy.
T(n) = Θ(f(n))

72

• Recurrence Relation:

 T(1) = 1 & T(n) = aT(n/b) + f(n)

• Guess: aT(n/b) >> f(n)

• Simplify: T(n) ≈ aT(n/b)

Solving Technique 3
Calculate Exponent

In this case, the answer is harder.

73

• Recurrence Relation:

 T(1) = 1 & T(n) = aT(n/b)

• Guess: T(n) = cnα

• Verify: Left Hand Side Right Hand Side

 T(n)

= cnα	

 aT(n/b)

= a [c (n/b) α]

= c a b-α nα	

Solving Technique 3
Calculate Exponent

(log a/log b) = cn

1 = a b-α

bα = a
α log b = log a
α = log a/log b

74

• Recurrence Relation:

 T(1) = 1 & T(n) = 4T(n/2)

• Guess: T(n) = cnα

• Verify: Left Hand Side Right Hand Side

 T(n)

= cnα	

 aT(n/b)

= a [c (n/b) α]

= c a b-α nα	

Solving Technique 3
Calculate Exponent

(log a/log b) = cn

1 = a b-α

bα = a
α log b = log a
α = log a/log b

log4/log2 2cn cn= =

75

• Recurrence Relation:

 T(1) = 1 & T(n) = aT(n/b) + f(n)

Solving Technique 3
Calculate Exponent

If bigger then
T(n) = Θ(f(n))

If bigger then
(log a/log b) T(n) = Θ(n)

And if aT(n/b) ≈ f(n)
 what is T(n) then?

76

Technique 4: Recursion Tree Method

•  T(n) = a T(n/b) + f(n)

f(n)

T(n/b) T(n/b) T(n/b) T(n/b)

T(n) =

T(1)

• T(1) = 1

1 =

a

77

f(n)

T(n/b) T(n/b) T(n/b) T(n/b)

T(n) =
a

78

f(n)

T(n/b) T(n/b) T(n/b)

T(n) =
a

f(n/b)

T(n/b2) T(n/b2) T(n/ b2) T(n/ b2)

a

79

f(n) T(n) =
a

f(n/b)

T(n/b2) T(n/b2) T(n/ b2) T(n/ b2)

a
f(n/b)

T(n/b2) T(n/b2) T(n/ b2) T(n/ b2)

a
f(n/b)

T(n/b2) T(n/b2) T(n/ b2) T(n/ b2)

a
f(n/b)

T(n/b2) T(n/b2) T(n/ b2) T(n/ b2)

a

COSC 3101, PROF. J. ELDER 80 11111111111111111111111111111111 111111111111111111111111111111111

f(n)
T(n)

=
a

f(n/b)

T(n/b2) T(n/b2) T(n/ b2) T(n/ b2)

a
f(n/b)

T(n/b2) T(n/b2) T(n/ b2) T(n/ b2)

a
f(n/b)

T(n/b2) T(n/b2) T(n/ b2) T(n/ b2)

a
f(n/b)

T(n/b2) T(n/b2) T(n/ b2) T(n/ b2)

a

81

Evaluating: T(n) = aT(n/b)+f(n)

Level

0

1

2

i

h

Instances

82

Evaluating: T(n) = aT(n/b)+f(n)

Level
Instance

size

0

1

2

i

h

Instances

83

Evaluating: T(n) = aT(n/b)+f(n)

Level
Instance

size

0 n

1

2

i

h

Instances

84

Evaluating: T(n) = aT(n/b)+f(n)

Level
Instance

size

0 n

1 n/b

2

i

h

Instances

85

Evaluating: T(n) = aT(n/b)+f(n)

Level
Instance

size

0 n

1 n/b

2 n/b2

i

h

Instances

86

Evaluating: T(n) = aT(n/b)+f(n)

Level
Instance

size

0 n

1 n/b

2 n/b2

i n/bi

h n/bh

Instances

87

Evaluating: T(n) = aT(n/b)+f(n)

Level
Instance

size

0 n

1 n/b

2 n/b2

i n/bi

h n/bh

Instances

88

Evaluating: T(n) = aT(n/b)+f(n)

Level
Instance

size

0 n

1 n/b

2 n/b2

i n/bi

h n/bh = 1

base case

Instances

89

Evaluating: T(n) = aT(n/b)+f(n)

Level
Instance

size

0 n

1 n/b

2 n/b2

i n/bi

h n/bh = 1

Instances

90

Evaluating: T(n) = aT(n/b)+f(n)

Level
Instance

size

0 n

1 n/b

2 n/b2

i n/bi

h = log n/log b n/bh = 1

 bh = n

h log b = log n
h = log n/log b

Instances

91

Evaluating: T(n) = aT(n/b)+f(n)

Level
Instance

size

Work

in stack

frame

0 n

1 n/b

2 n/b2

i n/bi

h = log n/log b 1

Instances

92

Evaluating: T(n) = aT(n/b)+f(n)

Level
Instance

size

Work

in stack

frame

0 n f(n)

1 n/b f(n/b)

2 n/b2 f(n/b2)

i n/bi f(n/bi)

h = log n/log b 1 T(1)

Instances

93

Evaluating: T(n) = aT(n/b)+f(n)

Level
Instance

size

Work

in stack

frame

stack
frames

0 n f(n)

1 n/b f(n/b)

2 n/b2 f(n/b2)

i n/bi f(n/bi)

h = log n/log b n/bh T(1)

Instances

94

Evaluating: T(n) = aT(n/b)+f(n)

Level
Instance

size

Work

in stack

frame

stack
frames

0 n f(n) 1

1 n/b f(n/b) a

2 n/b2 f(n/b2) a2

i n/bi f(n/bi) ai

h = log n/log b n/bh T(1) ah

Instances

95

Evaluating: T(n) = aT(n/b)+f(n)

Level
Instance

size

Work

in stack

frame

stack
frames

0 n f(n) 1

1 n/b f(n/b) a

2 n/b2 f(n/b2) a2

i n/bi f(n/bi) ai

h = log n/log b n/bh T(1) ah

Instances

96

Evaluating: T(n) = aT(n/b)+f(n)

Level
Instance

size

Work

in stack

frame

stack
frames

0 n f(n) 1

1 n/b f(n/b) a

2 n/b2 f(n/b2) a2

i n/bi f(n/bi) ai

h = log n/log b n/bh T(1) ah

Instances

log /logn bha a= log /loga bn=

97

Evaluating: T(n) = aT(n/b)+f(n)

Level
Instance

size

Work

in stack

frame

stack
frames Work in Level

0 n f(n) 1

1 n/b f(n/b) a

2 n/b2 f(n/b2) a2

i n/bi f(n/bi) ai

h = log n/log b n/bh T(1)

n
log a/log b

Instances

98

Evaluating: T(n) = aT(n/b)+f(n)

Level
Instance

size

Work

in stack

frame

stack
frames Work in Level

0 n f(n) 1 1 · f(n)

1 n/b f(n/b) a a · f(n/b)

2 n/b2 f(n/b2) a2 a2 · f(n/b2)

i n/bi f(n/bi) ai ai · f(n/bi)

h = log n/log b n/bh T(1)

n
log a/log b n · T(1)

log a/log b

Total Work T(n) = ∑i=0..h ai⋅f(n/bi)

Instances

99

Evaluating: T(n) = aT(n/b)+f(n)

= ∑i=0..h ai⋅f(n/bi)

If a Geometric Sum
∑i=0..n xi = θ(max(first term, last term))

100

Evaluating: T(n) = aT(n/b)+f(n)

Level
Instance

size

Work

in stack

frame

stack
frames Work in Level

0 n f(n) 1 1 · f(n)

1 n/b f(n/b) a a · f(n/b)

2 n/b2 f(n/b2) a2 a2 · f(n/b2)

i n/bi f(n/bi) ai ai · f(n/bi)

h = log n/log b n/bh T(1)

n
log a/log b n · T(1)

log a/log b

Dominated by Top Level or Base Cases

End of Lecture 7

102

Master Theorem: Intuition

Suppose () (/) (), 1, 1T n aT n b f n a b= + ≥ >

Work at top level () f n=
log log /logWork at bottom level number of base cases = b a a bn n= =

logRunning time = max(work at top, work at bottom) = max((),)b af n n

If they are equal, then all levels are important:
logRunning time = sum of work over all levels = logb an n

103

Theorem 4.1 (Master Theorem)

Suppose () (/) (), 1, 1T n aT n b f n a b= + ≥ >

log0 such that ()1.) F (I b af n O n εε −∃ > ∈
logT () (E)H N b aT n nθ∈

log2 () (. IF) b af n nθ∈
log() (THE l) gN ob aT n n nθ∈

log0 such that () ()3 . IF b af n n εε +∃ > ∈Ω

 AND
∃ < ≤ ∀ ≥0 01, >0 such that (/) () c n af n b cf n n n

()THE ((N))T n f nθ∈

Dominated by base cases

Work at each level is comparable:
Sum work over all levels

Dominated by top level work

Additional regularity condition

104

Theorem 4.1 (Master Theorem)

Suppose () (/) (), 1, 1T n aT n b f n a b= + ≥ >

log0 such that ()1.) F (I b af n O n εε −∃ > ∈
logT () (E)H N b aT n nθ∈

log2 () (. IF) b af n nθ∈
log() (THE l) gN ob aT n n nθ∈

log0 such that () ()3 . IF b af n n εε +∃ > ∈Ω

 AND
∃ < ≤ ∀ ≥0 01, >0 such that (/) () c n af n b cf n n n

()THE ((N))T n f nθ∈

= + → = =2e.g., () 4 (/2) () log log 4 2bT n T n f n a

ε =e.g., 0.01

 = 2() ?f n n
= 1.97() ?f n n

105

Example 2: () 4 (/2) 2nT n T n= +

4
2

a
b
= ⎫

⎬
= ⎭

log 2b an n=

() 2nf n =

logThus () () (Case 3: dominated by top level)b af n n ε+∈Ω

106

Theorem 4.1 (Master Theorem)

Suppose () (/) (), 1, 1T n aT n b f n a b= + ≥ >

log0 such that ()1.) F (I b af n O n εε −∃ > ∈
logT () (E)H N b aT n nθ∈

log2 () (. IF) b af n nθ∈
log() (THE l) gN ob aT n n nθ∈

log0 such that () ()3 . IF b af n n εε +∃ > ∈Ω

 AND
∃ < ≤ ∀ ≥0 01, >0 such that (/) () c n af n b cf n n n

()THE ((N))T n f nθ∈

Dominated by top level work

4
2

a
b
= ⎫

⎬
= ⎭

log 2b an n=

() 2nf n =

But what about this?

107

Example 2: () 4 (/2) 2nT n T n= +

4
2

a
b
= ⎫

⎬
= ⎭

log 2b an n=

() 2nf n =

logThus () () (Case 3: dominated by top level)b af n n ε+∈Ω

0 0

1, >0 such that (/) ()

Additional regularity condition:
c n af n b cf n n n∃ < ≤ ∀ ≥

n/2Thus we require that 4 2 2nc⋅ ≤

/24 2 nc −↔ ≥ ⋅

0
1Let 6
2

n c= → ≥

0regularity condition holds for 6, 0.5n c→ = =

Thus () (()) (2) nT n f nθ θ= =

108

= + 5Example 3: () 4 (/2) logT n T n n n

= ⎫
⎬

= ⎭

4
2

a
b =log 2b an n

= 5() logf n n n

ε−∈ logThus () () (Case 1: dominated by base cases)b af n O n

θ θlog 2Thus T(n)= () = (n)b an

109

Theorem 4.1 (Master Theorem)

Suppose () (/) (), 1, 1T n aT n b f n a b= + ≥ >

log0 such that ()1.) F (I b af n O n εε −∃ > ∈
logT () (E)H N b aT n nθ∈

log2 () (. IF) b af n nθ∈
log() (THE l) gN ob aT n n nθ∈

log0 such that () ()3 . IF b af n n εε +∃ > ∈Ω

 AND
∃ < ≤ ∀ ≥0 01, >0 such that (/) () c n af n b cf n n n

()THE ((N))T n f nθ∈

Dominated by base cases

= ⎫
⎬

= ⎭

4
2

a
b =log 2b an n

= 5() logf n n n

110

= + 2Example 4: () 4 (/2)T n T n n

= ⎫
⎬

= ⎭

4
2

a
b =log 2b an n

= 2()f n n

θ∈ logThus () () (Case 2: all levels significant)b af n n

θ θ= log 2Thus () (log) = (n log)b aT n n n n

111

Theorem 4.1 (Master Theorem)

Suppose () (/) (), 1, 1T n aT n b f n a b= + ≥ >

log0 such that ()1.) F (I b af n O n εε −∃ > ∈
logT () (E)H N b aT n nθ∈

log2 () (. IF) b af n nθ∈
log() (THE l) gN ob aT n n nθ∈

log0 such that () ()3 . IF b af n n εε +∃ > ∈Ω

 AND
∃ < ≤ ∀ ≥0 01, >0 such that (/) () c n af n b cf n n n

()THE ((N))T n f nθ∈

Work at each level is comparable:
Sum work over all levels

= ⎫
⎬

= ⎭

4
2

a
b =log 2b an n

= 2()f n n

112

0 5 10 15 20 0
5
10
15
20
25
30
35

n

f(n
)

e.g. () (/ 2) (1 .8cos)π= + −T n T n n n

log 0
2Here log log 1 0 1= = → = =b a

ba n n

and () (1 .8cos) .2 ()π= − ≥ ∈Ωf n n n n n

()logThus () , suggesting that Case 3 applies.ε+∈Ω b af n n

But does the regularity condition hold?

Master Theorem Case 3: When the Regularity Condition Fails

113

e.g. () (/ 2) (1 .8cos)π= + −T n T n n n

0 5 10 15 20 0
5
10
15
20
25
30
35

n

f(n
)

Does the regularity condition hold?

0We require that (/) () for some constant 1, .≤ < ∀ ≥af n b cf n c n n

(/ 2) ()↔ ≤f n cf n

()(/ 2)(1 .8cos / 2) (1 .8cos)π π↔ − ≤ −n n cn n

()(1/ 2)(1 .8cos / 2) (1 .8cos)π π↔ − ≤ −n c n

0 0Given arbitrary , select an
such that is even and / 2 is odd

≥n n n
n n

Then we require that (1/ 2)(1 .8) (1 .8)
.9 .2 4.5
+ ≤ −

↔ ≤ ↔ ≥

c
c c

Thus the regularity condition does not hold.

Master Theorem Case 3: When the Regularity Condition Fails

114

0 5 10 15 20 0
5
10
15
20
25
30
35

n
f(n
)

So what is the solution?

Master Theorem Case 3: When the Regularity Condition Fails

Note that () (1 .8cos) ()π= − ∈Θf n n n n
() (/ 2) (1 .8cos)π= + −T n T n n n

So in this case,
() (()) (), despite failure of the reg. condition.T n f n n∈Θ = Θ

Are there failures of the reg. condition
that result in () (())?

:
T

Ques
n

on
f

i
n

t
∉Θ

115

Master Theorem Case 3: When the Regularity Condition Fails

Are there failures of the reg. condition
that result in () (())?

:
T

Ques
n

on
f

i
n

t
∉Θ

= +

⎧ ⎡ ⎤⎪ ⎢ ⎥= ⎨
⎡ ⎤⎪ ⎢ ⎥⎩

3
2

2
2

 () 2 (/2) ()
 when log is even

where ()
 when log is odd

Consider T n T n f n
n n

f n
n n

Think about this puzzle and ask yourself:

1. Is the first condition of Case 3 satisfied?
2. Is the second (regularity) condition of Case 3 satisfied?
3. Is () (())?T n f n∈Θ

Let’s sleep on it.

Central Algorithmic Techniques

Recursion

117

Different Representations
of Recursive Algorithms

Code - Implement on Computer

Stack of Stack Frames - Run on Computer

Tree of Stack Frames - View entire computation

Friends & Strong Induction - Worry about one step at a time.

Pros Views

118

MULT(X,Y):

 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Code
Representation of an Algorithm

Pros and Cons?

119

Code
Representation of an Algorithm

•  Runs on computers

•  Precise and succinct

•  I am not a computer

•  I need a higher level of
intuition.

•  Prone to bugs

•  Language dependent

Pros: Cons:

120

Different Representations
of Recursive Algorithms

Code - Implement on Computer

Stack of Stack Frames - Run on Computer

Tree of Stack Frames - View entire computation

Friends & Strong Induction - Worry about one step at a time.

Pros Views

121

X = 2133
Y = 2312
ac =
bd =
(a+b)(c+d) =
XY =

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Stack of Stack Frames

Stack Frame: A particular
execution of one routine on one
particular input instance.

122

X = 2133
Y = 2312
ac = ?
bd =
(a+b)(c+d) =
XY =

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Stack of Stack Frames

123

X = 2133
Y = 2312
ac = ?
bd =
(a+b)(c+d) =
XY =

X = 21
Y = 23
ac =
bd =
(a+b)(c+d) =
XY =

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Stack of Stack Frames

124

X = 2133
Y = 2312
ac = ?
bd =
(a+b)(c+d) =
XY =

X = 21
Y = 23
ac = ?
bd =
(a+b)(c+d) =
XY =

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Stack of Stack Frames

125

X = 2133
Y = 2312
ac = ?
bd =
(a+b)(c+d) =
XY =

X = 21
Y = 23
ac = ?
bd =
(a+b)(c+d) =
XY =

X = 2
Y = 2
XY=

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Stack of Stack Frames

126

X = 2133
Y = 2312
ac = ?
bd =
(a+b)(c+d) =
XY =

X = 21
Y = 23
ac = ?
bd =
(a+b)(c+d) =
XY =

X = 2
Y = 2
XY = 4

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Stack of Stack Frames

127

X = 2133
Y = 2312
ac = ?
bd =
(a+b)(c+d) =
XY =

X = 21
Y = 23
ac = 4
bd =
(a+b)(c+d) =
XY =

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Stack of Stack Frames

128

X = 2133
Y = 2312
ac = ?
bd =
(a+b)(c+d) =
XY =

X = 21
Y = 23
ac = 4
bd = ?
(a+b)(c+d) =
XY =

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Stack of Stack Frames

129

X = 2133
Y = 2312
ac = ?
bd =
(a+b)(c+d) =
XY =

X = 21
Y = 23
ac = 4
bd = ?
(a+b)(c+d) =
XY =

X = 1
Y = 3
XY = 3

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Stack of Stack Frames

130

X = 2133
Y = 2312
ac = ?
bd =
(a+b)(c+d) =
XY =

X = 21
Y = 23
ac = 4
bd = 3
(a+b)(c+d) =
XY =

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Stack of Stack Frames

131

X = 2133
Y = 2312
ac = ?
bd =
(a+b)(c+d) =
XY =

X = 21
Y = 23
ac = 4
bd = 3
(a+b)(c+d) = ?
XY =

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Stack of Stack Frames

132

X = 2133
Y = 2312
ac = ?
bd =
(a+b)(c+d) =
XY =

X = 21
Y = 23
ac = 4
bd = 3
(a+b)(c+d) = ?
XY =

X = 3
Y = 5
XY = 15

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Stack of Stack Frames

133

X = 2133
Y = 2312
ac = ?
bd =
(a+b)(c+d) =
XY =

X = 21
Y = 23
ac = 4
bd = 3
(a+b)(c+d) = 15
XY = ?

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Stack of Stack Frames

134

X = 2133
Y = 2312
ac = ?
bd =
(a+b)(c+d) =
XY =

X = 21
Y = 23
ac = 4
bd = 3
(a+b)(c+d) = 15
XY = 483

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Stack of Stack Frames

135

X = 2133
Y = 2312
ac = 483
bd =
(a+b)(c+d) =
XY =

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Stack of Stack Frames

136

X = 2133
Y = 2312
ac = 483
bd = ?
(a+b)(c+d) =
XY =

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Stack of Stack Frames

137

X = 2133
Y = 2312
ac = 483
bd = ?
(a+b)(c+d) =
XY =

X = 33
Y = 12
ac = ?
bd =
(a+b)(c+d) =
XY = 15

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Stack of Stack Frames

138

X = 2133
Y = 2312
ac = 483
bd = ?
(a+b)(c+d) =
XY =

X = 33
Y = 12
ac = ?
bd =
(a+b)(c+d) =
XY = 15

X = 3
Y = 1
XY = 3

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Stack of Stack Frames

139

X = 2133
Y = 2312
ac = 483
bd = ?
(a+b)(c+d) =
XY =

X = 33
Y = 12
ac = 3
bd = ?
(a+b)(c+d) =
XY = 15

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Stack of Stack Frames

140

X = 2133
Y = 2312
ac = 483
bd = ?
(a+b)(c+d) =
XY =

X = 33
Y = 12
ac = 3
bd = ?
(a+b)(c+d) =
XY = 15

X = 3
Y = 2
XY = 6

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Stack of Stack Frames

141

X = 2133
Y = 2312
ac = 483
bd = ?
(a+b)(c+d) =
XY =

X = 33
Y = 12
ac = 3
bd = 6
(a+b)(c+d) = ?
XY = 15

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Stack of Stack Frames

142

X = 2133
Y = 2312
ac = 483
bd = ?
(a+b)(c+d) =
XY =

X = 33
Y = 12
ac = 3
bd = 6
(a+b)(c+d) = ?
XY = 396

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Stack of Stack Frames

An so on ….

143

Stack of Stack Frames
Representation of an Algorithm

•  Traces what actually occurs
in the computer

•  Concrete.

•  Described in words it is
impossible to follow

•  Does not explain why it
works.

•  Demonstrates for only one of
many inputs.

Pros: Cons:

144

Different Representations
of Recursive Algorithms

Code - Implement on Computer

Stack of Stack Frames - Run on Computer

Tree of Stack Frames - View entire computation

Friends & Strong Induction - Worry about one step at a time.

Pros Views

145

X = 2133
Y = 2312
ac = 483
bd = 396
(a+b)(c+d) = 1890
XY = 4931496

X = 21
Y = 23
ac = 4
bd = 3
(a+b)(c+d) = 15
XY = 483

X = 33
Y = 12
ac = 3
bd = 6
(a+b)(c+d) = 18
XY = 396

X = 54
Y = 35
ac = 15
bd = 20
(a+b)(c+d) = 72
XY = 1890

X = 2
Y = 2
XY=4

X = 1
Y = 3
XY=3

X = 3
Y = 5
XY=15

X = 3
Y = 1
XY=3

X = 3
Y = 2
XY=6

X = 6
Y = 3
XY=18

X = 5
Y = 3
XY=15

X = 4
Y = 5
XY=20

X = 9
Y = 8
XY=72

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Tree of Stack Frames

146

Stack of Stack Frames
Representation of an Algorithm

•  View the entire computation.

•  Good for computing the
running time.

•  Must describe entire tree.

–  For each stack frame
•  input instance
•  computation
•  solution returned

Pros: Cons:

147

Different Representations
of Recursive Algorithms

Code - Implement on Computer

Stack of Stack Frames - Run on Computer

Tree of Stack Frames - View entire computation

Friends & Strong Induction - Worry about one step at a time.

Pros Views

148

X = 2133
Y = 2312
ac = 483
bd = 396
(a+b)(c+d) = 1890
XY = 4931496

X = 21
Y = 23
ac = 4
bd = 3
(a+b)(c+d) = 15
XY = 483

X = 33
Y = 12
ac = 3
bd = 6
(a+b)(c+d) = 18
XY = 396

X = 54
Y = 35
ac = 15
bd = 20
(a+b)(c+d) = 72
XY = 1890

X = 2
Y = 2
XY=4

X = 1
Y = 3
XY=3

X = 3
Y = 5
XY=15

X = 3
Y = 1
XY=3

X = 3
Y = 2
XY=6

X = 6
Y = 3
XY=18

X = 5
Y = 3
XY=15

X = 4
Y = 5
XY=20

X = 9
Y = 8
XY=72

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Friends & Strong Induction
One Friend for each

stack frame.
Each worries only

about his job.

149

X = 2133
Y = 2312
ac = 483
bd = 396
(a+b)(c+d) = 1890
XY = 4931496

X = 21
Y = 23
ac = 4
bd = 3
(a+b)(c+d) = 15
XY = 483

X = 33
Y = 12
ac = 3
bd = 6
(a+b)(c+d) = 18
XY = 396

X = 54
Y = 35
ac = 15
bd = 20
(a+b)(c+d) = 72
XY = 1890

X = 2
Y = 2
XY=4

X = 1
Y = 3
XY=3

X = 3
Y = 5
XY=15

X = 3
Y = 1
XY=3

X = 3
Y = 2
XY=6

X = 6
Y = 3
XY=18

X = 5
Y = 3
XY=15

X = 4
Y = 5
XY=20

X = 9
Y = 8
XY=72

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Friends & Strong Induction
Worry about one

step at a time.
Imagine that you
are one specific

friend.

150

X = 33
Y = 12
ac =
bd =
(a+b)(c+d) =
XY =

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Friends & Strong Induction

• Consider your input instance

151

X = 33
Y = 12
ac = ?
bd = ?
(a+b)(c+d) =
XY =

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Friends & Strong Induction

• Consider your input instance

• Allocate work

• Construct one or more subinstances

X = 3
Y = 1
XY=?

X = 3
Y = 2
XY=?

X = 6
Y = 3
XY=?

152

X = 33
Y = 12
ac = 3
bd = 6
(a+b)(c+d) = 18
XY =

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Friends & Strong Induction

• Consider your input instance

• Allocate work

• Construct one or more subinstances

• Assume by magic your friends give you
the answer for these.

X = 3
Y = 1
XY=3

X = 3
Y = 2
XY=6

X = 6
Y = 3
XY=18

153

X = 33
Y = 12
ac = 3
bd = 6
(a+b)(c+d) = 18
XY = 396

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Friends & Strong Induction

• Consider your input instance

• Allocate work

• Construct one or more subinstances

• Assume by magic your friends give you
the answer for these.

• Use this help to solve your own instance.

X = 3
Y = 1
XY=3

X = 3
Y = 2
XY=6

X = 6
Y = 3
XY=18

154

X = 33
Y = 12
ac = 3
bd = 6
(a+b)(c+d) = 18
XY = 396

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Friends & Strong Induction

• Consider your input instance

• Allocate work

• Construct one or more subinstances

• Assume by magic your friends give you
the answer for these.

• Use this help to solve your own instance.

• Do not worry about anything else, e.g.,

• Who your boss is.

• How your friends solve their instance. X = 3
Y = 1
XY=3

X = 3
Y = 2
XY=6

X = 6
Y = 3
XY=18

155

X = 33
Y = 12
ac = 3
bd = 6
(a+b)(c+d) = 18
XY = 396

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Friends & Strong Induction

This technique is often
referred to as

Divide and Conquer

X = 3
Y = 1
XY=3

X = 3
Y = 2
XY=6

X = 6
Y = 3
XY=18

156

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Friends & Strong Induction

Consider generic instances.

ac bd (a+b)(c+d)

MULT(X,Y):
Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

MULT(X,Y):
If |X| = |Y| = 1 then RETURN XY

157

X = 2133
Y = 2312
ac = 483
bd = 396
(a+b)(c+d) = 1890
XY = 4931496

X = 21
Y = 23
ac = 4
bd = 3
(a+b)(c+d) = 15
XY = 483

X = 33
Y = 12
ac = 3
bd = 6
(a+b)(c+d) = 18
XY = 396

X = 54
Y = 35
ac = 15
bd = 20
(a+b)(c+d) = 72
XY = 1890

X = 2
Y = 2
XY=4

X = 1
Y = 3
XY=3

X = 3
Y = 5
XY=15

X = 3
Y = 1
XY=3

X = 3
Y = 2
XY=6

X = 6
Y = 3
XY=18

X = 5
Y = 3
XY=15

X = 4
Y = 5
XY=20

X = 9
Y = 8
XY=72

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Friends & Strong Induction
This solves the

problem for every
possible instance.

158

Friends & Strong Induction

Recursive Algorithm:
• Assume you have an algorithm that works.
• Use it to write an algorithm that works.

159

Friends & Strong Induction

Recursive Algorithm:
• Assume you have an algorithm that works.
• Use it to write an algorithm that works.

If I could get in,
I could get the key.

Then I could unlock the door
so that I can get in.

Circular Argument!

160

Friends & Strong Induction

Recursive Algorithm:
• Assume you have an algorithm that works.
• Use it to write an algorithm that works.

To get into my house
I must get the key from a smaller house

161

X = 33
Y = 12
ac = ?
bd = ?
(a+b)(c+d) =
XY =

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Friends & Strong Induction

• Allocate work

• Construct one or more
subinstances

X = 3
Y = 1
XY=?

X = 3
Y = 2
XY=?

X = 6
Y = 3
XY=?

Each subinstance must be
a smaller instance

to the same problem.

162

Friends & Strong Induction

Recursive Algorithm:
• Assume you have an algorithm that works.
• Use it to write an algorithm that works.

Use brute force
to get into
the smallest house.

163

MULT(X,Y):
 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f

Friends & Strong Induction

MULT(X,Y):
If |X| = |Y| = 1 then RETURN XY

Use brute force
to solve the base case
instances.

164

Friends & Strong Induction
Carefully write the specifications for the problem.

Preconditions: Set of legal instances
(inputs)

Why?

Postconditions:

Required output

165

Friends & Strong Induction
Carefully write the specifications for the problem.

Preconditions: Set of legal instances
(inputs)

• To be sure that we solve the
problem for every legal instance.

• So that we know

– what we can give to a
friend.

Postconditions: Required output • So that we know

– what is expected of us.

– what we can expect from
our friend.

Related to Loop Invariants

Applications of Recursion

Another Numerical Computation Example

167

•  Given two integers, what is
their greatest common divisor?

•  e.g., gcd(56,24) =

The Greatest Common Divisor (GCD) Problem

 divides d a↔

8

Given
N

, :
otation:

|
d a

d a
∈¢

:k a kd↔ ∃ ∈ =¢

()| a
Imp

nd
ortant Property:

| | ,d a d b d ax by x y→ + ∀ ∈¢

 All integers divide 0: |Note 0: d d∀ ∈¢

168

Euclid’s Trick

gcd(,) gc 2d(,)a b a b b= −

gcd(,
C

) gcd(,
onseque :

)
nce

a b a b b= −

gcd(,) gc 3d(,)a b a b b= −

. .,e g

()| a
Imp

nd
ortant Property:

| | ,d a d b d ax by x y→ + ∀ ∈¢

Use this property to make the GCD problem eaId sea: ier!

Good!

Better!

Too Far!

M
optiWhat mal is the choice?

gcd(,) gc modd(,)a b a b b= modgcd 56,24 56 24() gcd() gcd(,24 8 4),2= =

56,24 56 3 24gcd() ,24gcd() gc)6, 4d(1 2− × −= =

56,24 56 2 24,24gcd() gcd() gcd(8,24)= =− ×

56,24 56 24,2gcd() gcd() gcd()4 32,24−= =

Euclid of Alexandria,
"The Father of Geometry"
c. 300 BC

169

Euclid’s Algorithm (circa 300 BC)

<Precondition: and are positive integers>
<Postcondition

if 0 th

Euclid(a,b)

return(

en

else

: returns gcd(,)>

)

return(Euclid(, od))

m

a

b

b

a

a

b
b

b

a
=

 met, siPrecondi nce moti don a b∈¢
Postcondition met, since

2. Otherwise, gcd(,) gcd(, mod)a b b a b=

3. Algorithm halts, since 0 mod a b b≤ <

1. 0 gcd(,) gcd(,0)b a b a a= → = =

End of Lecture 8

171

Time Complexity

return(

E

)

uclid(a,
if 0 then

else
return(Euclid(, mod))

b

)

a

b a b

b =

2nd argument drops by factor of at least 2 every 2 iteraC tlaim: ions.
Proof:
Iteration Arg 1 Arg 2

1 mod
2 mod mod(mod)

i a b
i b a b
i a b b a b
+

+

≤ < ≤ mod / 2. Then mod(moCa dse) d / 2 o1 m: a b b b a b a b b

 mod / 2. Then mod(mod) /Case 2: 2 b a b b b a b b> > <

172

Time Complexity

return(

E

)

uclid(a,
if 0 then

else
return(Euclid(, mod))

b

)

a

b a b

b =

Let total number of recursive calls to Euclid.k =

Each stackframe must compute mod , which takes more than constant time.a b

2It can be shown that the resulting time complexity is () ().T n O n∈

Let input size number of bits used to represent and .n a b= ;
/2 /2Then 2 2 .k nb k n→; ; ;

Applications of Recursion

Data Organization

A Simple Example:

The Tower of Hanoi

175

Tower of Hanoi

 This job of mine
is a bit daunting.
Where do I start?

And I am lazy.

176

Tower of Hanoi

At some point,
the biggest disk

moves.
I will do that job.

177

Tower of Hanoi

To do this,
the other disks
must be in the

middle.

178

Tower of Hanoi

How will these
move?

I will get a
friend to do it.
And another to

move these.
I only move the

big disk.

179

Tower of Hanoi

180

Tower of Hanoi

Time:
T(1) = 1,
T(n) =
 ≈ 2(2T(n-2))
 ≈ 4(2T(n-3))

≈ 2T(n-1)
≈ 4T(n-2)
≈ 8T(n-3)
≈ 2i T(n-i)
≈ 2n

1 + 2T(n-1)

More Data Organization Examples

Sorting

182

Recursive Sorts

•  Given list of objects to be sorted

•  Split the list into two sublists.

•  Recursively have a friend sort the two sublists.

•  Combine the two sorted sublists into one entirely sorted list.

Example: Merge Sort

184

Merge Sort

88 14
98 25

62

52

79

30
23

31

Divide and Conquer

185

Merge Sort

88 14
98 25

62

52

79

30
23

31
Split Set into Two

 (no real work)

25,31,52,88,98

Get one friend to
sort the first half.

14,23,30,62,79

Get one friend to
sort the second half.

186

Merge Sort

Merge two sorted lists into one

25,31,52,88,98

14,23,30,62,79

14,23,25,30,31,52,62,79,88,98

187

Merge Sort

Time: T(n) =
 = Θ(n log(n))

2T(n/2) + Θ(n)

Example: Quick Sort

189

Quick Sort

88 14
98 25

62

52

79

30
23

31

Divide and Conquer

190

Quick Sort

88 14
98 25

62

52

79

30
23

31

Partition set into two using
randomly chosen pivot

14

25
30

23 31

88 98
62

79
≤ 52 ≤

191

Quick Sort

14

25
30

23 31

88 98
62

79
≤ 52 ≤

14,23,25,30,31

Get one friend to
sort the first half.

62,79,98,88

Get one friend to
sort the second half.

192

Quick Sort

14,23,25,30,31

62,79,98,88
52

Glue pieces together.
 (No real work)

14,23,25,30,31,52,62,79,88,98

COSC 3101, PROF. J. ELDER 193

194

Quick Sort

88 14
98 25

62

52

79

30
23

31

Let pivot be the first
element in the list?

14

25
30

23

88 98
62

79
≤ 31 ≤

52

195

Quick Sort

≤ 14 ≤

14,23,25,30,31,52,62,79,88,98

23,25,30,31,52,62,79,88,98

If the list is already sorted,
then the list is worst case unbalanced.

196

Quick Sort

Best Time:

Worst Time:

Expected Time:

T(n) = 2T(n/2) + Θ(n)
 = Θ(n log(n))

197

Quick Sort

T(n) = 2T(n/2) + Θ(n)
 = Θ(n log(n))

Best Time:

Worst Time:

Expected Time:

= Θ(n2)
T(n) = T(1) + T(n-1) + Θ(n)

198

Quick Sort

T(n) = 2T(n/2) + Θ(n)
 = Θ(n log(n))

Best Time:

T(n) = T(0) + T(n-1) + Θ(n) Worst Time:

Expected Time:

= Θ(n2)

T(n) = Θ(nlog(n))
(The proof is not difficult, but it’s a little long)

199

Expected Time Complexity for Quick Sort

 Why is it reasonable to expect (log) time complex tQ: i y?n nΘ

 Because on average, the partition is not too unbalanA: ced.

− − ∈ + =

Example: Imagine a deterministic partition,
in which the 2 subsets are always in fixed proportion, i.e.,

(1) & (1), where , are constants, , [0...1], 1.p n q n p q p q p q

(1)p n − (1)q n −

200

Expected Time Complexity for Quick Sort

(1)p n − (1)q n −

Then () ((1)) ((1)) ()T n T p n T q n n= − + − +Θ

>

∈Θ

= → =

wlog, suppose that .
Then recursion tree has depth k (log) :

1 log / log(1 /)k

q p
n

q n k n q

() work done per level () (log).n T n n nΘ → = Θ

201

Properties of QuickSort

•  In-place?

•  Stable?

•  Fast?
–  Depends.

–  Worst Case:

–  Expected Case:

2()nΘ

(log), with small constantsn nΘ

202

Heaps, Heap Sort, &
Priority Queues

203

Heapsort

•  O(nlogn) worst case – like merge sort

•  Sorts in place – like insertion sort

•  Combines the best of both algorithms

204

Heap Definition (MaxHeap)

•  Balanced binary tree

•  The value of each node ≥ each of the node's children.

•  Left or right child could be next largest.

Where can 1 go?
Maximum is at root.

Where can 8 go?

Where can 9 go?

205

Some Additional Properties of Heaps

The height of a node of the heap is the number of edges on the
 simple downard path from the node

()
longe to a l a .st e f

h i i

h = 0

h = 1

h = 0

h = 2 h = 1

h = 3

The height of a heap is the height of the root.H

206

Some Additional Properties of Heaps

2An -element heap has height logH nn = ⎢ ⎥⎣ ⎦

i = 1

i = 2

i = 3

i = 4 i = 5 i = 6 i = 7

i = 8 i = 9

207

Some Additional Properties of Heaps

A heap of height has at least 2 nodes.HH n =

i = 1

i = 2

i = 3

i = 4 i = 5 i = 6 i = 7

i = 8 i = 9

1A heap of height has at most 2 -1 nodes.HH n +=
12 2 1H Hn +≤ ≤ −

208

Heap Data Structure
Balanced Binary Tree Implemented by an Array

209

Make Heap

Get help from friends
Now we are just left with this problem

210

Heapify

?
Maximum must be at root. Where should the maximum be?

<pre-cond>: Left and right subtrees of A[i] are max heaps.
<post-cond>: Subtree rooted at i is a heap.

Max-Heapify(A, i, n)

i

211

Find the maximum.

?

Repeat

Heapify

<pre-cond>: Left and right subtrees of A[i] are max heaps.
<post-cond>: Subtree rooted at i is a heap.

Max-Heapify(A, i, n)

i
Put it in place

212

Heap

Running Time:

Heapify

<pre-cond>: Left and right subtrees of A[i] are max heaps.
<post-cond>: Subtree rooted at i is a heap.

Max-Heapify(A, i, n)

213

<pre-cond>: Left and right subtrees of A[i] are max heaps.
<post-cond>: Subtree rooted at i is a heap.

Max-Heapify(A, i, n)

e.g., Max-Heapify (A,2,10)

 Max-Heapify (A,4,10)

 Max-Heapify (A,9,10)

End of Lecture 9

215

MakeHeap

•  MakeHeap uses Max-Heapify to reorganize the tree from
bottom to top to make it a heap.

•  MakeHeap can be written concisely in either recursive or
iterative form.

216

<pre-cond>:A[i n] is a balanced binary tree
<post-cond>:The subtree rooted at
if /4

(, (),)
(, (),)

Max-Hea

 is a hea

M

pify

akeHeap

p

(

)

)

(

,

, ,

,

i n then
MakeHeap A LEFT i n
MakeHe

i

ap A RIGHT i

A i n

n
A i n

≤ ⎢ ⎥⎣ ⎦

K

Recursive MakeHeap

T(n) = 2T(n/2) + log(n)

Running time:

= Θ(n)
i

n

p/2 is of arentn n⎢ ⎥⎣ ⎦

grandp/4 is ot f arenn n⎢ ⎥⎣ ⎦

Invoke as MakeHeap (A, 1, n)

217

<pre-cond>:A[i n] is a balanced binary tree
<post-cond>:The subtree rooted at
if /4

(, (),)
(, (),)

Max-Hea

 is a hea

M

pify

akeHeap

p

(

)

)

(

,

, ,

,

i n then
MakeHeap A LEFT i n
MakeHe

i

ap A RIGHT i

A i n

n
A i n

≤ ⎢ ⎥⎣ ⎦

K

Recursive MakeHeap

i

n

p/2 is of arentn n⎢ ⎥⎣ ⎦

grandp/4 is ot f arenn n⎢ ⎥⎣ ⎦

Question from last class: what if i = 4??
What then is n??

218

Recursive MakeHeap

i = 1

i = 2 i = 3

i = 4

n = ?

i = 5 i = 6 i = 7

219

Heaps Heap
?

<pre-cond>:A[1 n] is a balanced binary tree
<post-cond>:A[1 n] is a heap

: All subtrees roo
fo

te

M

r /2 downto 1

Max-Heap
d

ify(, ,)

akeHeap(

at 1 are heaps

,)

LI i n
i n

A i

n

n

A

←

<

⎢ ⎥⎣
> +

⎦

K
K

K

<pre-cond>: Left and right subtrees of A[i] are max heaps.
<post-cond>: Subtree rooted at i is a heap.

Max-Heapify(A, i, n)

Iterative MakeHeap

220

<pre-cond>: Left and right subtrees of A[i] are max heaps.
<post-cond>: Subtree rooted at i is a heap.

Max-Heapify(A, i, n)

Iterative MakeHeap

?
Heap

<pre-cond>:A[1 n] is a balanced binary tree
<post-cond>:A[1 n] is a heap

: All subtrees roo
fo

te

M

r /2 downto 1

Max-Heap
d

ify(, ,)

akeHeap(

at 1 are heaps

,)

LI i n
i n

A i

n

n

A

←

<

⎢ ⎥⎣
> +

⎦

K
K

K

221

<pre-cond>: Left and right subtrees of A[i] are max heaps.
<post-cond>: Subtree rooted at i is a heap.

Max-Heapify(A, i, n)

Iterative MakeHeap

?
Heap

<pre-cond>:A[1 n] is a balanced binary tree
<post-cond>:A[1 n] is a heap

: All subtrees roo
fo

te

M

r /2 downto 1

Max-Heap
d

ify(, ,)

akeHeap(

at 1 are heaps

,)

LI i n
i n

A i

n

n

A

←

<

⎢ ⎥⎣
> +

⎦

K
K

K

222

<pre-cond>: Left and right subtrees of A[i] are max heaps.
<post-cond>: Subtree rooted at i is a heap.

Max-Heapify(A, i, n)

Iterative MakeHeap

?

<pre-cond>:A[1 n] is a balanced binary tree
<post-cond>:A[1 n] is a heap

: All subtrees roo
fo

te

M

r /2 downto 1

Max-Heap
d

ify(, ,)

akeHeap(

at 1 are heaps

,)

LI i n
i n

A i

n

n

A

←

<

⎢ ⎥⎣
> +

⎦

K
K

K

223

<pre-cond>: Left and right subtrees of A[i] are max heaps.
<post-cond>: Subtree rooted at i is a heap.

Max-Heapify(A, i, n)

Iterative MakeHeap

Heap

<pre-cond>:A[1 n] is a balanced binary tree
<post-cond>:A[1 n] is a heap

: All subtrees roo
fo

te

M

r /2 downto 1

Max-Heap
d

ify(, ,)

akeHeap(

at 1 are heaps

,)

LI i n
i n

A i

n

n

A

←

<

⎢ ⎥⎣
> +

⎦

K
K

K

224

Iterative MakeHeap

Runtime:

2Height of heap log n= ⎢ ⎥⎣ ⎦

+

⎡ ⎤
≤ ⎢ ⎥
⎢ ⎥

1It can be shown that the number of nodes at height
2h
nh

Time to heapify from node at height h ()O h∈

⎢ ⎥⎣ ⎦

+
=

⎡ ⎤→ = ⎢ ⎥⎢ ⎥
∑

2log

1
0

() ()
2

n

h
h

nT n O h
⎢ ⎥⎣ ⎦

=

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑

2log

0 2

n

h
h

hO n ()=O n

<pre-cond>:A[1 n] is a balanced binary tree
<post-cond>:A[1 n] is a heap

: All subtrees roo
fo

te

M

r /2 downto 1

Max-Heap
d

ify(, ,)

akeHeap(

at 1 are heaps

,)

LI i n
i n

A i

n

n

A

←

<

⎢ ⎥⎣
> +

⎦

K
K

K

225

Iterative MakeHeap

•  Recursive and Iterative MakeHeap do essentially the
same thing: Heapify from bottom to top.

•  Difference:
–  Recursive is “depth-first”
–  Iterative is “breadth-first”

Using Heaps for Sorting

227

Selection Sort

Largest i values are sorted on the right.
Remaining values are off to the left.

6,7,8,9 <
3

4
1
5

2

Max is easier to find if a heap.

228

4 3

1 2

Heap Sort

Largest i values are sorted on side.
Remaining values are in a heap.

<pre-cond>:A[1...n] is a list of keys
<post-cond>:A[1...n] is sorted in non-decr

HeapS

easin

or

g

t(,)

order

A n

229

4 3

1 2

4 3

1 2

Heap Data Structure

Heap Array

5 4 3 1 2

9 8

7 6

Heap

Array

230

Heap Sort
Largest i values
are sorted on side.
Remaining values are
in a heap

Put next value
where it belongs.

Heap

?

<pre-cond>: Left and right subtrees of A[i] are max heaps.
<post-cond>: Subtree rooted at i is a heap.

Max-Heapify(A, i, n)

231

Heap Sort
?

? ?

? ?

? ?

Sorted

232

Heap Sort
<pre-cond>:A[1...n] is a list of keys
<post-cond>:A[1...n] is sorted in non-decreasing order

: [1] is a he

HeapSor

ap
[

M

t

akeHeap(A,n)

1] contains the largest keys in n

for dow

on-dec

nt

r

(,

o 2

)

LI A i
A i

A

n

i

n

n
< >

+

←

K
K

exchange [1] []
Max-H

easing

eapify

 orde

(,1,

r

1)
A A i

A i
↔

−

Running Time:

Other Applications of Heaps

234

Priority Queue

•  Maintains dynamic set, A, of n elements, each with a key.

•  Max-priority queue supports:

1. MAXIMUM(A)

2. EXTRACT-MAX(A, n)

3.  INCREASE-KEY(A, i, key)

4.  INSERT(A, key, n)

•  Example Application: Schedule jobs on a shared computer.

235

Priority Queues cont’d...

•  MAXIMUM(A):

•  EXTRACT-MAX(A,n):

236

Priority Queue cont’d...

•  INCREASE-KEY(A, i, key):

•  INSERT(A, key, n):

237

Binary Search Trees

•  Support many dynamic-set operations

•  Basic operations take time proportional to height h of
tree.

(log) for balanced treenΘ

() for worst-cased unbalanced treenΘ

238

38

25

17

4 21

31

28 35

51

42

40 49

63

55 71

Binary Search Tree

Left children ≤ Node ≤ Right children

≤ ≤

239

BST Data Structure

240

Insertion

<pre-cond>: is a BST, a node to be inserted
<post-cond>: is

Tree-Inser

 a BST wit

t(,

h insert

)

ed
T z

T z

T z

241

38

25

17

4 21

31

28 35

51

42

40 49

63

55 71

Insertion
=[] 36key z?

36
() ()T n h= Θ

242

Building a Tree

←

<pre-cond>: is a set of nodes
<post-cond>: Returns a BST consisting of the node

NIL
fo

B

r in
Tree-Insert

s in

uild-BS

,

T

()

(Z)

T
z Z

T

Z

z

Z

For balanced tree, number of nodes inserted into tree of height is 2hh

Time for each insertion ()h= Θ

2log

0
Thus () 2 ()

n
h

h
T n h

⎢ ⎥⎣ ⎦

=

= Θ∑ (log)n n= Θ

243

38

25

17

4 21

31

28 35

51

42

40 49

63

55 71

Searching the Tree

•  PreConditions
– Key 25
– A binary search tree.

–  PostConditions
– Find key in BST (if there).

244

Searching the Tree
•  Maintain a sub-tree.

•  If the key is contained in the original tree, then the key
is contained in the sub-tree.

key 17
38

25

17

4 21

31

28 35

51

42

40 49

63

55 71

245

Define Step
•  Cut sub-tree in half.
•  Determine which half the key would be in.

•  Keep that half.

key 17
38

25

17

4 21

31

28 35

51

42

40 49

63

55 71

If key < root,
then key is
in left half.

If key > root,
then key is
in right half.

If key = root,
then key is
found

246

Searching the Tree
<pre-cond>: is a BST, is a key to search for
<post-cond>: returns the node matching if it exist

Tree-Sea

s or NIL

rch

 ot

(,)

herwise

x k
x k

k

Runtime ()h= Θ

247

Why use (balanced) binary search trees?

•  What is the advantage over a sorted linear array?
–  Search time is the same

–  However, maintaining (inserting, deleting, modifying) is
•  Θ(logn) for balanced BSTs

•  Θ(n) for arrays

