
Recursive Algorithms 



Introduction 

Applications to Numeric Computation 
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Complex Numbers 

•  Remember how to multiply 2 complex numbers? 

•   (a+bi)(c+di) = [ac –bd] + [ad + bc] i 

•   Input: a,b,c,d       Output: ac-bd, ad+bc 

•  If a real multiplication costs $1 and an addition cost a penny, what is 
the cheapest way to obtain the output from the input? 

•   Can you do better than $4.02? 
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Johann Carl Friedrich Gauss  
(* 30. April 1777 in Braunschweig,  
† 23. Februar 1855 in Göttingen)  

•  Input: a,b,c,d    Output: ac-bd, ad+bc  
•  m1 = ac 

•  m2 = bd 

•  A1 = m1 – m2 = ac-bd 
•  m3 = (a+b)(c+d) = ac + ad + bc + bd 

•  A2 = m3 – m1 – m2 = ad+bc 

Gauss’ Method: 

Total Cost? 
$3.05! 
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Question 

•  The Gauss method saves one multiplication out of four.  
It requires 25% less work.  

•  Could there be a context where performing 3 
multiplications for every 4  provides a more dramatic 
savings?  

•  Let’s back up a bit. 
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How to add 2 n-bit numbers. 
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How to add 2 n-bit numbers. 
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Time complexity of  
grade school addition 
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On any reasonable 
computer adding 3 
bits can be done in 
constant time. 

( ) ( )T n n→ ∈Ο
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Is there a faster way to add? 

•  QUESTION: Is there an algorithm to add two n-bit 
numbers whose time grows sub-linearly in n? 
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Any algorithm for addition must read all of 
the input bits 

–  Suppose there is a mystery algorithm that does not examine 
each bit   

–  Give the algorithm a pair of numbers. There must be some 
unexamined bit position i in one of the numbers 

–  If the algorithm returns the wrong answer, we have found a bug 

–  If the algorithm is correct, flip the bit at position i and give the 
algorithm this new input.  

–  The algorithm must return the same answer, which now is 
wrong. 
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So any algorithm for addition must 
use time at least linear in the size of 

the numbers. 
 

Grade school addition is essentially 
as good as it can be. 
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How to multiply 2 n-bit numbers. 

X
* * * * * * * *  
* * * * * * * *  

  * * * * * * * * 
  * * * * * * * * 

  * * * * * * * * 
  * * * * * * * * 

  * * * * * * * * 
  * * * * * * * * 
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How to multiply 2 nHow to multiply 2 n--bit numbers.bit numbers.

X
* * * * * * * * 
* * * * * * * * 

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * * * * * * * * * *

n2

I get it! The total time 
is bounded by cn2. 
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How to multiply 2 n-bit numbers: 
Kindergarten Algorithm 

a × b = a + a + a + ... + a  

b 
T(n) = θ(bn) 
Fast? 

(2 )!nn= Θ
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Grade School Addition: Linear time 
Grade School Multiplication: Quadratic time 

 Kindergarten Multiplication: Exponential time 

# of  bits in numbers 

ti
m

e 



End of Lecture 6 
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Neat! We have demonstrated that 
multiplication is a harder problem 

than addition. 
 

Mathematical confirmation of  our 
common sense. 
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Don’t jump to conclusions! 
We have argued that grade school 

multiplication uses more time than grade 
school addition. This is a comparison of  

the complexity of  two algorithms. 
 

To argue that multiplication is an 
inherently harder problem than addition 
we would have to show that no possible 

multiplication algorithm runs in linear 
time. 
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Grade School Addition: θ(n) time 
Grade School Multiplication: θ(n2) time 

Is there a clever algorithm to 
multiply two numbers in 

linear time? 
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Despite years of  research, no one 
knows!  
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Is there a faster way to 
multiply two numbers than 

the way you learned in grade 
school? 
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Good question!  
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Recursive Divide And Conquer 

•  DIVIDE a problem into smaller subproblems 

•  CONQUER them recursively 

•  GLUE the answers together so as to obtain the answer 
to the larger problem   
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Multiplication of 2 n-bit numbers 

•  X =  

•  Y =  

•  X = a 2n/2 + b     Y = c 2n/2 + d  

•  XY = ac 2n + (ad+bc) 2n/2 + bd  

a b 

c d 
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Multiplication of 2 n-bit numbers 

•  X =  

•  Y =  

•  XY =   ac 2n + (ad+bc) 2n/2 + bd  

a b 

c d 

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 RETURN  

   MULT(a,c) 2n + (MULT(a,d) + MULT(b,c)) 2n/2 + MULT(b,d) 
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Time required by MULT 

•  T(n) = time taken by MULT on two n-bit numbers 

  

•  What is T(n)?  
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Recurrence Relation 

• T(1) = k for some constant k 

• T(n) = 4 T(n/2) + k’ n + k’’ for some constants k’ and k’’ 

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 RETURN  

   MULT(a,c) 2n + (MULT(a,d) + MULT(b,c)) 2n/2 + MULT(b,d) 
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For example 

•  T(1) = 1 

•  T(n) = 4 T(n/2) + n 

 

•  How do we unravel T(n) so that we can determine its     
growth rate? 
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Technique 1: (Substitution) 

•  Recurrence: 

•  Guess: 

•  Proof: 

(1) 1  
( ) 4 ( / 2) , 2,4,8
T
T n T n n n

=

= + = K

2(*) ( ) 2T n n n= −

(*) (1) 2 1 1T→ = − =

( )2 2

2 2

Now suppose (*) is satisfied for / 2.

( / 2) 2 / 2 / 2 / 2 / 2
Then by the recurrence relation,

( ) 4 ( / 2) 2 2 2 .
Thus (*) is also satisfied for n

n

T n n n n n

T n T n n n n n n n

→ = − = −

= + = − + = −
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T(n) 

Technique 2: Recursion Tree 

•  T(n)              =              n + 4 T(n/2) 

• T(1)              =              1 

n 

(n/2) 

= n 

T(n/2) T(n/2) T(n/2) T(n/2) 

= 

T(1) 1 = 
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n 

T(n/2) T(n/2) T(n/2) T(n/2) 

T(n) = 
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n 

T(n/2) T(n/2) T(n/2) 

T(n) 
= 

n/2 

T(n/4) T(n/4) T(n/4) T(n/4) 
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n T(n) = 

n/2 

T(n/4) T(n/4) T(n/4) T(n/4) 

n/2 

T(n/4) T(n/4) T(n/4) T(n/4) 

n/2 

T(n/4) T(n/4) T(n/4) T(n/4) 

n/2 

T(n/4) T(n/4) T(n/4) T(n/4) 
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n T(n) = 

n/2 n/2 n/2 n/2 

11111111111111111111111111111111 . . . . . . 111111111111111111111111111111111 

n/4 n/4 n/4 n/4 n/4 n/4 n/4 n/4 n/4 n/4 n/4 n/4 n/4 n/4 n/4 n/4 
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Level i is the sum of 4i copies of n/2i 

1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+
1+1+1+1 

. . . . . . . . . . . . . . . . . . . . . . . . . .  

                  n/2           +          n/2          +         n/2           +            n/2  

n 

n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 

0 

1 

2 

i 

log n2
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Level i is the sum of 4i copies of n/2i

1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

. . . . . . . . . . . . . . . . . . . . . . . . . . 

n/2         + n/2        +         n/2          +     n/2

n

n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4

0

1

2

i

log n2

=1⋅n 
= 4⋅n/2 

= 16⋅n/4 

= 4i ⋅n/2i 

= 4logn⋅n/2logn 

=22logn⋅1=n2 

( ) ( )
log

log 1 2 2

0
2 2 1 2 1 2 ( )

n
i n

i
n n n n n n n+

=

= − = − = − ∈Θ∑
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Level i is the sum of 4i copies of n/2i

1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

. . . . . . . . . . . . . . . . . . . . . . . . . . 

n/2         + n/2        +         n/2          +     n/2

n

n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4

0

1

2

i

log n2

=1⋅n 
= 4⋅n/2 

= 16⋅n/4 

= 4i ⋅n/2i 

= 4logn⋅n/2logn 

=22logn⋅1=n2 

2Geometric Increasing -  dominated by last term: ( ) ( ( )) ( )f n f n n= Θ = Θ∑



42 

Divide and Conquer MULT: θ(n2) time  
Grade School Multiplication: θ(n2) time 

All that work for nothing! 
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MULT revisited 

•  MULT calls itself 4 times. Can you see a 
way to reduce the number of calls? 

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 RETURN  

   MULT(a,c) 2n + (MULT(a,d) + MULT(b,c)) 2n/2 + MULT(b,d) 
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Gauss’ Idea: Input: a,b,c,d    Output: ac, ad+bc, bd 

•  A1 = ac 

•  A3 = bd 

•  m3   = (a+b)(c+d) = ac + ad + bc + bd 

•  A2 = m3 – A1-  A3 =   ad + bc 
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Gaussified MULT (Karatsuba 1962) 

T(n) = 3 T(n/2) + n 
(More precisely: T(n) = 2 T(n/2) + T(n/2 + 1) + kn) 

MULT(X,Y): 

 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN  e2n + (MULT(a+b, c+d) – e - f) 2n/2 + f 
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n T(n) 
= 

n/2 

T(n/4) T(n/4) T(n/4) T(n/4) 

n/2 

T(n/4) T(n/4) T(n/4) T(n/4) 

n/2 

T(n/4) T(n/4) T(n/4) T(n/4) 

n/2 

T(n/4) T(n/4) T(n/4) T(n/4) 
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n 

T(n/2) T(n/2) T(n/2) 

T(n) 
= 
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n 

T(n/2) T(n/2) 

T(n) 
= 

n/2 

T(n/4) T(n/4) T(n/4) 
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n T(n) 
= 

n/2 

T(n/4) T(n/4) T(n/4) 

n/2 

T(n/4) T(n/4) T(n/4) 

n/2 

T(n/4) T(n/4) T(n/4) 
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Level i is the sum of 3i copies of n/2i 

1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1
+1+1+1 

. . . . . . . . . . . . . . . . . . . . . . . . . .  

 n/2        +      n/2          +      n/2 

n 

n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 

0 

1 

2 

i 

log n2
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=1⋅n 
= 3⋅n/2 

= 9⋅n/4 

= 3i ⋅n/2i Level i is the sum of 3i copies of n/2i

1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

. . . . . . . . . . . . . . . . . . . . . . . . . . 

n/2        +         n/2          +     n/2

n

n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4

0

1

2

i

log n2
= 3logn⋅n/2logn 

=nlog3⋅1 

log3 1.58...Geometric Increasing -  dominated by last term: ( ) ( ( )) ( ) ( )f n f n n n= Θ = Θ Θ∑ ;
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Dramatic improvement for large n 

Not just a 25% savings! 
  

θ(n2) vs θ(n1.58..)  
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Grade-School Multiplication 

X
* * * * * * * *  
* * * * * * * *  

  * * * * * * * * 
  * * * * * * * * 

  * * * * * * * * 
  * * * * * * * * 

  * * * * * * * * 
  * * * * * * * * 

  * * * * * * * * 
  * * * * * * * * 

  * * * * * * * * * * * * * * * * 

n2 

2 2

2

 multiplies +  additions 
( ) 2  bit operations

n n
T n n→ ;
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Gaussified MULT (Karatsuba 1962) 

T(n) ≈ 3 T(n/2) + kn 
What is k? 

MULT(X,Y): 

 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN  e2n + (MULT(a+b, c+d) – e - f) 2n/2 + f 

e.g., k=8 
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Dramatic improvement for large n 

Not just a 25% savings! 
  

θ(2n2) vs θ(8n1.58..)  

Example:   

A networking simulation requires 10 million multiplications of 16-bit integers. 

Suppose that each bit operation takes 4 picosec on your machine (realistic). 

Grade School Multiplication Time = 2 days 9 hours (do it over the weekend!) 

Karatsuba Multiplication Time = 5.4 minutes (just enough time to grab a coffee!) 

MATLAB takes 0.07 seconds on my machine (don’t blink!) 
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Multiplication Algorithms 

Kindergarten n2n 

Grade School n2 

Karatsuba n1.58… 

Fastest Known 
(Schönhage-Strassen algorithm, 1971) 

n logn loglogn 
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What a difference a single recursive call makes! 

•  What are the underlying principles here? 

•  How can we systematically predict which recursive 
algorithms are going to save time, and which are not? 



Recurrence Relations 

T(1) = 1 

T(n) = a T(n/b) + f(n) 
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Recurrence Relations 
≈ Time of Recursive Program 

procedure  Eg(int n)   

     if(n≤1) then  

          put “Hi”  
      else 

          loop i=1..f(n) 

              put “Hi”                   
          loop i=1..a 

              Eg(n/b)  

•  Recurrence relations arise 
from the timing of recursive 
programs. 

•  Let T(n) be the # of  “Hi”s on 
an input of “size” n.  
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Recurrence Relations 
≈ Time of Recursive Program 

Given size 1, the program outputs T(1)=1 Hi’s. 

Given size n, the stackframe outputs  f(n) Hi’s. 

Recursing on a instances of size n/b generates aT(n/b) “Hi”s. 

For a total of T(1) = 1;  T(n) = a·T(n/b) + f(n) “Hi”s. 

procedure  Eg(int n)   

     if(n≤1) then  

          put “Hi”  
      else 

          loop i=1..f(n) 

              put “Hi”                   
          loop i=1..a 

              Eg(n/b)  
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Technique 1: (Substitution) 

•  Recurrence: 

•  Guess: 

•  Proof: 

(1) 1  
( ) 4 ( / 2) , 2,4,8
T
T n T n n n

=

= + = K

2(*) ( ) 2T n n n= −

(*) (1) 2 1 1T→ = − =

( )2 2

2 2

Now suppose (*) is satisfied for / 2.

( / 2) 2 / 2 / 2 / 2 / 2
Then by the recurrence relation,

( ) 4 ( / 2) 2 2 2 .
Thus (*) is also satisfied for n

n

T n n n n n

T n T n n n n n n n

→ = − = −

= + = − + = −



62 

More Generally, and Formally 

(1) 1 &  ( ) 4 ( /2 )T T n T n n= = +⎢ ⎥⎣ ⎦
2Hypothesis: ( ) ( )T n n= Θ

2
1Suppose that lower bound holds for /2 , i.e., /2 ( /2 )i c i T i≤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

2 2
1 2 0 0 1 2i.e., , , 0 : , ( )c c n n n c n T n c n∃ > ∀ ≥ ≤ ≤

  LowerStep 1.  Bound

( ) 2
1

, 

( ) 4 /

S

2

ubstituti

4 /2

ng

T i T i i c i i= + ≥ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
2

1
14

2
ic i−⎛ ⎞≥ +⎜ ⎟
⎝ ⎠

( )= − + +2
14 /4 /2 1/4c i i i

⎡ ⎤= − + +⎣ ⎦
2

1 2 1c i i i 1
1Suppose that 
2

c =

⎡ ⎤≥ − + +⎣ ⎦
21Then ( ) 2 1

2
T i i i i = +21 1

2 2
i 21

2
i≥ 2

1c i= Thus lower bound holds for i!
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To Summarize 
2

1If lower bound holds for /2 , i.e., /2 ( /2 )i c i T i≤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1
1with ,
2

c =

2
1Then lower bound holds for , i.e., ( )i c i T i≤
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Base Case 

Does lower bound hold for 1?i =
2 2

1
1 1(1) ( ) 1
2 2

 Yes!c i T i= = ≤ =

By induction, must also hold for 2,3,4,5,...i =

Follow similar process to prove upper bound.

= → =

= → =

= → =

M

e.g., 
1 2,3
2 4,5
3 6,7

i i
i i
i i
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• Recurrence Relation:  

 T(1) = 1 & T(n) = 4T(n/2) + n 

• Guess: T(n) = an2 + bn + c 

• Verify: Left Hand Side Right Hand Side 

   T(1) = a+b+c 
 

   T(n) 

= an2 +bn+c 

 

   1 
 

   4T(n/2) + n 

= 4 [a (n/2)2 + b (n/2) +c] + n 

= an2 +(2b+1)n + 4c  

Solving Technique 2 
Guess Form and Calculate Coefficients 
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• Recurrence Relation:  

 T(1) = 1 & T(n) = 4T(n/2) + n 

• Guess: T(n) = an2 + bn + c 

• Verify: Left Hand Side Right Hand Side 

   T(1) = a+b+c 
 

   T(n) 

= an2 +bn+c 

 

   1 
 

   4T(n/2) + n 

= 4 [a (n/2)2 + b (n/2) +c] + n 

= an2 +(2b+1)n + 4c  

Solving Technique 2 
Guess Form and Calculate Coefficients 

c=4c 
 c=0   
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• Recurrence Relation:  

 T(1) = 1 & T(n) = 4T(n/2) + n 

• Guess: T(n) = an2 +bn + 0 

• Verify: Left Hand Side Right Hand Side 

   T(1) = a+b+c 
 

   T(n) 

= an2 +bn+c 

 

   1 
 

   4T(n/2) + n 

= 4 [a (n/2)2 + b (n/2) +c] + n 

= an2 +(2b+1)n + 4c  

Solving Technique 2 
Guess Form and Calculate Coefficients 

     b = 2b+1 
 b = -1 
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• Recurrence Relation:  

 T(1) = 1 & T(n) = 4T(n/2) + n 

• Guess: T(n) = an2 - 1n + 0 

• Verify: Left Hand Side Right Hand Side 

   T(1) = a+b+c 
 

   T(n) 

= an2 +bn+c 

 

   1 
 

   4T(n/2) + n 

= 4 [a (n/2)2 + b (n/2) +c] + n 

= an2 +(2b+1)n + 4c  

Solving Technique 2 
Guess Form and Calculate Coefficients 

a=a 
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• Recurrence Relation:  

 T(1) = 1 & T(n) = 4T(n/2) + n 

• Guess: T(n) = an2 - 1n + 0 

• Verify: Left Hand Side Right Hand Side 

   T(1) = a+b+c 
 

   T(n) 

= an2 +bn+c 

 

   1 
 

   4T(n/2) + n 

= 4 [a (n/2)2 + b (n/2) +c] + n 

= an2 +(2b+1)n + 4c  

Solving Technique 2 
Guess Form and Calculate Coefficients 

a+b+c=1 
a-1+0=1 
a=2 

2( ) 2T n n n→ = −
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• Recurrence Relation:  

 T(1) = 1 & T(n) = aT(n/b) + f(n) 

Solving Technique 3 
Approximate Form and  

Calculate Exponent 

which is bigger? 

Guess 



71 

• Recurrence Relation:  

 T(1) = 1 & T(n) = aT(n/b) + f(n) 

• Guess: aT(n/b) << f(n) 

• Simplify: T(n) ≈ f(n) 

Solving Technique 3 
Calculate Exponent  

In this case, the answer is easy.                         
T(n) = Θ(f(n)) 
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• Recurrence Relation:  

 T(1) = 1 & T(n) = aT(n/b) + f(n) 

• Guess: aT(n/b) >> f(n) 

• Simplify: T(n) ≈ aT(n/b)  

Solving Technique 3 
Calculate Exponent 

In this case, the answer is harder. 
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• Recurrence Relation:  

 T(1) = 1 & T(n) = aT(n/b) 

• Guess: T(n) = cnα 

• Verify: Left Hand Side Right Hand Side 

   T(n) 

= cnα	

   aT(n/b)  

= a [c (n/b) α ] 

= c a b-α nα	


Solving Technique 3 
Calculate Exponent 

(log a/log b) = cn 

1   = a b-α  

bα = a 
α log b = log a 
α = log a/log b  
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• Recurrence Relation:  

 T(1) = 1 & T(n) = 4T(n/2) 

• Guess: T(n) = cnα 

• Verify: Left Hand Side Right Hand Side 

   T(n) 

= cnα	

   aT(n/b)  

= a [c (n/b) α ] 

= c a b-α nα	


Solving Technique 3 
Calculate Exponent 

(log a/log b) = cn 

1   = a b-α  

bα = a 
α log b = log a 
α = log a/log b  

log4/log2 2cn cn= =
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• Recurrence Relation:  

 T(1) = 1 & T(n) = aT(n/b) + f(n) 

Solving Technique 3 
Calculate Exponent 

If bigger then 
T(n) = Θ(f(n)) 

If bigger then 
(log a/log b) T(n) = Θ(n         ) 

And if aT(n/b) ≈ f(n)  
     what is T(n) then? 
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Technique 4: Recursion Tree Method 

•  T(n)              =              a T(n/b) + f(n) 

f(n) 

T(n/b) T(n/b) T(n/b) T(n/b) 

T(n) = 

T(1) 

• T(1)              =              1 

1 = 

a 
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f(n) 

T(n/b) T(n/b) T(n/b) T(n/b) 

T(n) = 
a 
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f(n) 

T(n/b) T(n/b) T(n/b) 

T(n) = 
a 

f(n/b) 

T(n/b2) T(n/b2) T(n/ b2) T(n/ b2) 

a 
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f(n) T(n) = 
a 

f(n/b) 

T(n/b2) T(n/b2) T(n/ b2) T(n/ b2) 

a 
f(n/b) 

T(n/b2) T(n/b2) T(n/ b2) T(n/ b2) 

a 
f(n/b) 

T(n/b2) T(n/b2) T(n/ b2) T(n/ b2) 

a 
f(n/b) 

T(n/b2) T(n/b2) T(n/ b2) T(n/ b2) 

a 
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f(n) 
T(n) 

= 
a 

f(n/b) 

T(n/b2) T(n/b2) T(n/ b2) T(n/ b2) 

a 
f(n/b) 

T(n/b2) T(n/b2) T(n/ b2) T(n/ b2) 

a 
f(n/b) 

T(n/b2) T(n/b2) T(n/ b2) T(n/ b2) 

a 
f(n/b) 

T(n/b2) T(n/b2) T(n/ b2) T(n/ b2) 

a 
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Evaluating: T(n) = aT(n/b)+f(n) 

Level 

  

  

  

0 

1 

2 

i 

h 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

# Instances 
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Evaluating: T(n) = aT(n/b)+f(n) 

Level 
Instance 

size 

  

  

  

0 

1 

2 

i 

h 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

# Instances 



83 

Evaluating: T(n) = aT(n/b)+f(n) 

Level 
Instance 

size 

  

  

  

0 n 

1 

2 

i 

h 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

# Instances 
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Evaluating: T(n) = aT(n/b)+f(n) 

Level 
Instance 

size 

  

  

  

0 n 

1 n/b 

2 

i 

h 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

# Instances 
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Evaluating: T(n) = aT(n/b)+f(n) 

Level 
Instance 

size 

  

  

  

0 n 

1 n/b 

2 n/b2 

i 

h 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

# Instances 
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Evaluating: T(n) = aT(n/b)+f(n) 

Level 
Instance 

size 

  

  

  

0 n 

1 n/b 

2 n/b2 

i n/bi 

h n/bh 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

# Instances 
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Evaluating: T(n) = aT(n/b)+f(n) 

Level 
Instance 

size 

  

  

  

0 n 

1 n/b 

2 n/b2 

i n/bi 

h n/bh 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

# Instances 
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Evaluating: T(n) = aT(n/b)+f(n) 

Level 
Instance 

size 

  

  

  

0 n 

1 n/b 

2 n/b2 

i n/bi 

h n/bh = 1 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

base case 

# Instances 
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Evaluating: T(n) = aT(n/b)+f(n) 

Level 
Instance 

size 

  

  

  

0 n 

1 n/b 

2 n/b2 

i n/bi 

h n/bh = 1 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

# Instances 
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Evaluating: T(n) = aT(n/b)+f(n) 

Level 
Instance 

size 

  

  

  

0 n 

1 n/b 

2 n/b2 

i n/bi 

h = log n/log b n/bh = 1 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 bh = n 

h log b = log n 
h = log n/log b 

# Instances 
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Evaluating: T(n) = aT(n/b)+f(n) 

Level 
Instance 

size 

Work 

in stack 

frame  

  

0 n   

1 n/b 

2 n/b2 

i n/bi 

h = log n/log b 1 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

# Instances 
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Evaluating: T(n) = aT(n/b)+f(n) 

Level 
Instance 

size 

Work 

in stack 

frame  

  

0 n f(n)   

1 n/b f(n/b) 

2 n/b2 f(n/b2) 

i n/bi f(n/bi) 

h = log n/log b 1 T(1) 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

# Instances 
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Evaluating: T(n) = aT(n/b)+f(n) 

Level 
Instance 

size 

Work 

in stack 

frame  

# stack 
frames 

0 n f(n) 

1 n/b f(n/b) 

2 n/b2 f(n/b2) 

i n/bi f(n/bi) 

h = log n/log b n/bh T(1) 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

# Instances 
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Evaluating: T(n) = aT(n/b)+f(n) 

Level 
Instance 

size 

Work 

in stack 

frame  

# stack 
frames 

0 n f(n) 1 

1 n/b f(n/b) a 

2 n/b2 f(n/b2) a2 

i n/bi f(n/bi) ai 

h = log n/log b n/bh T(1) ah 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

# Instances 
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Evaluating: T(n) = aT(n/b)+f(n) 

Level 
Instance 

size 

Work 

in stack 

frame  

# stack 
frames 

0 n f(n) 1 

1 n/b f(n/b) a 

2 n/b2 f(n/b2) a2 

i n/bi f(n/bi) ai 

h = log n/log b n/bh T(1) ah 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

# Instances 
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Evaluating: T(n) = aT(n/b)+f(n) 

Level 
Instance 

size 

Work 

in stack 

frame  

# stack 
frames 

0 n f(n) 1 

1 n/b f(n/b) a 

2 n/b2 f(n/b2) a2 

i n/bi f(n/bi) ai 

h = log n/log b n/bh T(1) ah 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

# Instances 

log /logn bha a= log /loga bn=
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Evaluating: T(n) = aT(n/b)+f(n) 

Level 
Instance 

size 

Work 

in stack 

frame  

# stack 
frames Work in Level 

0 n f(n) 1 

1 n/b f(n/b) a 

2 n/b2 f(n/b2) a2 

i n/bi f(n/bi) ai 

h = log n/log b n/bh T(1) 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

n 
log a/log b 

# Instances 
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Evaluating: T(n) = aT(n/b)+f(n) 

Level 
Instance 

size 

Work 

in stack 

frame  

# stack 
frames Work in Level 

0 n f(n) 1 1 · f(n) 

1 n/b f(n/b) a a · f(n/b) 

2 n/b2 f(n/b2) a2 a2  · f(n/b2) 

i n/bi f(n/bi) ai ai  · f(n/bi) 

h = log n/log b n/bh T(1)        

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

n 
log a/log b n          · T(1) 

log a/log b  

Total Work  T(n) = ∑i=0..h ai⋅f(n/bi) 

# Instances 
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Evaluating: T(n) = aT(n/b)+f(n)              

= ∑i=0..h ai⋅f(n/bi) 
 

If a Geometric Sum 
∑i=0..n  xi = θ(max(first term, last term)) 
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Evaluating: T(n) = aT(n/b)+f(n) 

Level 
Instance 

size 

Work 

in stack 

frame  

# stack 
frames Work in Level 

0 n f(n) 1 1 · f(n) 

1 n/b f(n/b) a a · f(n/b) 

2 n/b2 f(n/b2) a2 a2  · f(n/b2) 

i n/bi f(n/bi) ai ai  · f(n/bi) 

h = log n/log b n/bh T(1)        

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

n 
log a/log b n          · T(1) 

log a/log b  

Dominated by    Top Level   or   Base Cases   



End of Lecture 7 
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Master Theorem:  Intuition

Suppose ( ) ( / ) ( ),  1,  1T n aT n b f n a b= + ≥ >

Work at top level ( ) f n=
log log /logWork at bottom level  number of base cases = b a a bn n= =

logRunning time = max(work at top, work at bottom) = max( ( ), )b af n n

If they are equal, then all levels are important:
logRunning time = sum of work over all levels = logb an n
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Theorem 4.1 (Master Theorem)

Suppose ( ) ( / ) ( ),  1,  1T n aT n b f n a b= + ≥ >

log0 such that ( )1.  ) F (I b af n O n εε −∃ > ∈
logT ( ) ( E )H N b aT n nθ∈

log2 ( ) (. IF )  b af n nθ∈
log( ) (THE l ) gN ob aT n n nθ∈

log0 such that ( ) ( )3  . IF b af n n εε +∃ > ∈Ω

 AND 
∃ < ≤ ∀ ≥0 01, >0 such that ( / ) ( ) c n af n b cf n n n

( )THE ( (N ))T n f nθ∈

Dominated by base cases

Work at each level is comparable:
Sum work over all levels

Dominated by top level work

Additional regularity condition
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Theorem 4.1 (Master Theorem)

Suppose ( ) ( / ) ( ),  1,  1T n aT n b f n a b= + ≥ >

log0 such that ( )1.  ) F (I b af n O n εε −∃ > ∈
logT ( ) ( E )H N b aT n nθ∈

log2 ( ) (. IF )  b af n nθ∈
log( ) (THE l ) gN ob aT n n nθ∈

log0 such that ( ) ( )3  . IF b af n n εε +∃ > ∈Ω

 AND 
∃ < ≤ ∀ ≥0 01, >0 such that ( / ) ( ) c n af n b cf n n n

( )THE ( (N ))T n f nθ∈

= + → = =2e.g., ( ) 4 ( /2) ( ) log log 4 2bT n T n f n a

ε =e.g., 0.01
 

 = 2( ) ?f n n
= 1.97( ) ?f n n
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Example 2: ( ) 4 ( /2) 2nT n T n= +

4
2

a
b
= ⎫

⎬
= ⎭

log 2b an n=

( ) 2nf n =

logThus ( ) ( ) (Case 3: dominated by top level)b af n n ε+∈Ω
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Theorem 4.1 (Master Theorem)

Suppose ( ) ( / ) ( ),  1,  1T n aT n b f n a b= + ≥ >

log0 such that ( )1.  ) F (I b af n O n εε −∃ > ∈
logT ( ) ( E )H N b aT n nθ∈

log2 ( ) (. IF )  b af n nθ∈
log( ) (THE l ) gN ob aT n n nθ∈

log0 such that ( ) ( )3  . IF b af n n εε +∃ > ∈Ω

 AND 
∃ < ≤ ∀ ≥0 01, >0 such that ( / ) ( ) c n af n b cf n n n

( )THE ( (N ))T n f nθ∈

Dominated by top level work

4
2

a
b
= ⎫

⎬
= ⎭

log 2b an n=

( ) 2nf n =

But what about this? 
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Example 2: ( ) 4 ( /2) 2nT n T n= +

4
2

a
b
= ⎫

⎬
= ⎭

log 2b an n=

( ) 2nf n =

logThus ( ) ( ) (Case 3: dominated by top level)b af n n ε+∈Ω

0 0

 
1, >0 such that ( / ) ( ) 

Additional regularity condition: 
c n af n b cf n n n∃ < ≤ ∀ ≥

n/2Thus we require that 4 2 2nc⋅ ≤

/24 2 nc −↔ ≥ ⋅

0
1Let 6
2

n c= → ≥

0regularity condition holds for 6,  0.5n c→ = =

Thus ( ) ( ( )) (2 ) nT n f nθ θ= =



108 

= + 5Example 3: ( ) 4 ( /2) logT n T n n n

= ⎫
⎬

= ⎭

4
2

a
b =log 2b an n

= 5( ) logf n n n

ε−∈ logThus ( ) ( ) (Case 1: dominated by base cases)b af n O n

θ θlog 2Thus T(n)= ( ) = (n )b an



109 

Theorem 4.1 (Master Theorem)

Suppose ( ) ( / ) ( ),  1,  1T n aT n b f n a b= + ≥ >

log0 such that ( )1.  ) F (I b af n O n εε −∃ > ∈
logT ( ) ( E )H N b aT n nθ∈

log2 ( ) (. IF )  b af n nθ∈
log( ) (THE l ) gN ob aT n n nθ∈

log0 such that ( ) ( )3  . IF b af n n εε +∃ > ∈Ω

 AND 
∃ < ≤ ∀ ≥0 01, >0 such that ( / ) ( ) c n af n b cf n n n

( )THE ( (N ))T n f nθ∈

Dominated by base cases

= ⎫
⎬

= ⎭

4
2

a
b =log 2b an n

= 5( ) logf n n n
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= + 2Example 4: ( ) 4 ( /2)T n T n n

= ⎫
⎬

= ⎭

4
2

a
b =log 2b an n

= 2( )f n n

θ∈ logThus ( ) ( ) (Case 2: all levels significant)b af n n

θ θ= log 2Thus ( ) ( log ) = (n log )b aT n n n n
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Theorem 4.1 (Master Theorem)

Suppose ( ) ( / ) ( ),  1,  1T n aT n b f n a b= + ≥ >

log0 such that ( )1.  ) F (I b af n O n εε −∃ > ∈
logT ( ) ( E )H N b aT n nθ∈

log2 ( ) (. IF )  b af n nθ∈
log( ) (THE l ) gN ob aT n n nθ∈

log0 such that ( ) ( )3  . IF b af n n εε +∃ > ∈Ω

 AND 
∃ < ≤ ∀ ≥0 01, >0 such that ( / ) ( ) c n af n b cf n n n

( )THE ( (N ))T n f nθ∈

Work at each level is comparable:
Sum work over all levels

= ⎫
⎬

= ⎭

4
2

a
b =log 2b an n

= 2( )f n n
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0 5 10 15 20 0 
5 
10 
15 
20 
25 
30 
35 

n 

f(n
) 

e.g. ( ) ( / 2) (1 .8cos )π= + −T n T n n n

log 0
2Here log log 1 0 1= = → = =b a

ba n n

and ( ) (1 .8cos ) .2 ( )π= − ≥ ∈Ωf n n n n n

( )logThus ( ) ,  suggesting that Case 3 applies.ε+∈Ω b af n n

But does the regularity condition hold?

Master Theorem Case 3:  When the Regularity Condition Fails 
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e.g. ( ) ( / 2) (1 .8cos )π= + −T n T n n n

0 5 10 15 20 0 
5 
10 
15 
20 
25 
30 
35 

n 

f(n
) 

Does the regularity condition hold?

0We require that ( / ) ( ) for some constant 1, .≤ < ∀ ≥af n b cf n c n n

( / 2) ( )↔ ≤f n cf n

( )( / 2)(1 .8cos / 2 ) (1 .8cos )π π↔ − ≤ −n n cn n

( )(1/ 2)(1 .8cos / 2 ) (1 .8cos )π π↔ − ≤ −n c n

0 0Given arbitrary ,  select an  
such that  is even and / 2 is odd

≥n n n
n n

Then we require that (1/ 2)(1 .8) (1 .8) 
.9 .2 4.5
+ ≤ −

↔ ≤ ↔ ≥

c
c c

Thus the regularity condition does not hold.

Master Theorem Case 3:  When the Regularity Condition Fails 
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0 5 10 15 20 0 
5 
10 
15 
20 
25 
30 
35 

n 
f(n
) 

So what is the solution?

Master Theorem Case 3:  When the Regularity Condition Fails 

Note that ( ) (1 .8cos ) ( )π= − ∈Θf n n n n
( ) ( / 2) (1 .8cos )π= + −T n T n n n

So in this case, 
( ) ( ( )) ( ),  despite failure of the reg. condition.T n f n n∈Θ = Θ

Are there failures of the reg. condition
that result in ( ) ( ( ))?

:  
T

Ques
n

on
f

i
n

t
∉Θ
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Master Theorem Case 3:  When the Regularity Condition Fails 

Are there failures of the reg. condition
that result in ( ) ( ( ))?

:  
T

Ques
n

on
f

i
n

t
∉Θ

= +

⎧ ⎡ ⎤⎪ ⎢ ⎥= ⎨
⎡ ⎤⎪ ⎢ ⎥⎩

3
2

2
2

 ( ) 2 ( /2) ( )
 when log  is even

where ( )
 when log  is odd

Consider T n T n f n
n n

f n
n n

Think about this puzzle and ask yourself:

1. Is the first condition of Case 3 satisfied?
2. Is the second (regularity) condition of Case 3 satisfied?
3. Is ( ) ( ( ))?T n f n∈Θ

Let’s sleep on it. 



Central Algorithmic Techniques 

Recursion 
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Different Representations 
of Recursive Algorithms 

Code - Implement on Computer 

Stack of Stack Frames - Run on Computer 

Tree of Stack Frames - View entire computation 

Friends & Strong Induction - Worry about one step at a time. 

Pros Views 



118 

MULT(X,Y): 

 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Code  
Representation of an Algorithm 

Pros and Cons? 
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Code  
Representation of an Algorithm 

•  Runs on computers 

•  Precise and succinct 

•  I am not a computer 

•  I need a higher level of 
intuition. 

•  Prone to bugs 

•  Language dependent 

Pros: Cons: 
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Different Representations 
of Recursive Algorithms 

Code - Implement on Computer 

Stack of Stack Frames - Run on Computer 

Tree of Stack Frames - View entire computation 

Friends & Strong Induction - Worry about one step at a time. 

Pros Views 
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X = 2133 
Y = 2312 
ac =  
bd =  
(a+b)(c+d) =  
XY =  

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

 e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Stack of Stack Frames 

Stack Frame: A particular 
execution of one routine on one 
particular input instance. 
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X = 2133 
Y = 2312 
ac = ? 
bd =  
(a+b)(c+d) =  
XY =  

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Stack of Stack Frames 
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X = 2133 
Y = 2312 
ac = ? 
bd =  
(a+b)(c+d) =  
XY =  

X = 21 
Y = 23 
ac =  
bd =  
(a+b)(c+d) =  
XY =  

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Stack of Stack Frames 
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X = 2133 
Y = 2312 
ac = ? 
bd =  
(a+b)(c+d) =  
XY =  

X = 21 
Y = 23 
ac =  ? 
bd =  
(a+b)(c+d) =  
XY =  

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Stack of Stack Frames 
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X = 2133 
Y = 2312 
ac = ? 
bd =  
(a+b)(c+d) =  
XY =  

X = 21 
Y = 23 
ac =  ? 
bd =  
(a+b)(c+d) =  
XY =  

X = 2 
Y = 2 
XY= 

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Stack of Stack Frames 
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X = 2133 
Y = 2312 
ac = ? 
bd =  
(a+b)(c+d) =  
XY =  

X = 21 
Y = 23 
ac =  ? 
bd =  
(a+b)(c+d) =  
XY =  

X = 2 
Y = 2 
XY = 4 

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Stack of Stack Frames 
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X = 2133 
Y = 2312 
ac = ? 
bd =  
(a+b)(c+d) =  
XY =  

X = 21 
Y = 23 
ac = 4 
bd =  
(a+b)(c+d) =  
XY =  

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Stack of Stack Frames 
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X = 2133 
Y = 2312 
ac = ? 
bd =  
(a+b)(c+d) =  
XY =  

X = 21 
Y = 23 
ac = 4 
bd = ? 
(a+b)(c+d) =  
XY =  

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Stack of Stack Frames 
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X = 2133 
Y = 2312 
ac = ? 
bd =  
(a+b)(c+d) =  
XY =  

X = 21 
Y = 23 
ac = 4 
bd = ? 
(a+b)(c+d) =  
XY =  

X = 1 
Y = 3 
XY = 3 

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Stack of Stack Frames 
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X = 2133 
Y = 2312 
ac = ? 
bd =  
(a+b)(c+d) =  
XY =  

X = 21 
Y = 23 
ac = 4 
bd = 3 
(a+b)(c+d) =  
XY =  

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Stack of Stack Frames 
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X = 2133 
Y = 2312 
ac = ? 
bd =  
(a+b)(c+d) =  
XY =  

X = 21 
Y = 23 
ac = 4 
bd = 3 
(a+b)(c+d) = ? 
XY =  

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Stack of Stack Frames 
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X = 2133 
Y = 2312 
ac = ? 
bd =  
(a+b)(c+d) =  
XY =  

X = 21 
Y = 23 
ac = 4 
bd = 3 
(a+b)(c+d) = ? 
XY =  

X = 3 
Y = 5 
XY = 15 

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Stack of Stack Frames 
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X = 2133 
Y = 2312 
ac = ? 
bd =  
(a+b)(c+d) =  
XY =  

X = 21 
Y = 23 
ac = 4 
bd = 3 
(a+b)(c+d) = 15 
XY = ? 

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Stack of Stack Frames 
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X = 2133 
Y = 2312 
ac = ? 
bd =  
(a+b)(c+d) =  
XY =  

X = 21 
Y = 23 
ac = 4 
bd = 3 
(a+b)(c+d) = 15 
XY = 483 

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Stack of Stack Frames 
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X = 2133 
Y = 2312 
ac = 483 
bd =  
(a+b)(c+d) =  
XY =  

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Stack of Stack Frames 
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X = 2133 
Y = 2312 
ac = 483 
bd = ? 
(a+b)(c+d) =  
XY =  

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Stack of Stack Frames 
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X = 2133 
Y = 2312 
ac = 483 
bd = ? 
(a+b)(c+d) =  
XY =  

X = 33 
Y = 12 
ac = ? 
bd =  
(a+b)(c+d) =  
XY = 15 

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Stack of Stack Frames 
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X = 2133 
Y = 2312 
ac = 483 
bd = ? 
(a+b)(c+d) =  
XY =  

X = 33 
Y = 12 
ac = ? 
bd =  
(a+b)(c+d) =  
XY = 15 

X = 3 
Y = 1 
XY = 3 

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Stack of Stack Frames 
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X = 2133 
Y = 2312 
ac = 483 
bd = ? 
(a+b)(c+d) =  
XY =  

X = 33 
Y = 12 
ac = 3 
bd = ? 
(a+b)(c+d) =  
XY = 15 

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Stack of Stack Frames 
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X = 2133 
Y = 2312 
ac = 483 
bd = ? 
(a+b)(c+d) =  
XY =  

X = 33 
Y = 12 
ac = 3 
bd = ? 
(a+b)(c+d) =  
XY = 15 

X = 3 
Y = 2 
XY = 6 

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Stack of Stack Frames 
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X = 2133 
Y = 2312 
ac = 483 
bd = ? 
(a+b)(c+d) =  
XY =  

X = 33 
Y = 12 
ac = 3 
bd = 6 
(a+b)(c+d) = ? 
XY = 15 

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Stack of Stack Frames 
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X = 2133 
Y = 2312 
ac = 483 
bd = ? 
(a+b)(c+d) =  
XY =  

X = 33 
Y = 12 
ac = 3 
bd = 6 
(a+b)(c+d) = ? 
XY = 396 

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Stack of Stack Frames 

An so on …. 
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Stack of Stack Frames  
Representation of an Algorithm 

•  Traces what actually occurs 
in the computer 

•  Concrete.  

•  Described in words it is 
impossible to follow 

•  Does not explain why it 
works. 

•  Demonstrates for only one of 
many inputs. 

Pros: Cons: 
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Different Representations 
of Recursive Algorithms 

Code - Implement on Computer 

Stack of Stack Frames - Run on Computer 

Tree of Stack Frames - View entire computation 

Friends & Strong Induction - Worry about one step at a time. 

Pros Views 
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X = 2133 
Y = 2312 
ac = 483 
bd = 396 
(a+b)(c+d) = 1890 
XY = 4931496 

X = 21 
Y = 23 
ac = 4 
bd = 3 
(a+b)(c+d) = 15 
XY = 483 

X  = 33 
Y = 12 
ac = 3 
bd = 6 
(a+b)(c+d) = 18 
XY = 396 

X = 54 
Y = 35 
ac = 15 
bd = 20 
(a+b)(c+d) = 72 
XY = 1890 

X = 2 
Y = 2 
XY=4 

X = 1 
Y = 3 
XY=3 

X = 3 
Y = 5 
XY=15 

X = 3 
Y = 1 
XY=3 

X = 3 
Y = 2 
XY=6 

X = 6 
Y = 3 
XY=18 

X = 5 
Y = 3 
XY=15 

X = 4 
Y = 5 
XY=20 

X = 9 
Y = 8 
XY=72 

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Tree of Stack Frames 
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Stack of Stack Frames  
Representation of an Algorithm 

•  View the entire computation. 

•  Good for computing the 
running time.   

•  Must describe entire tree.  

–  For each stack frame  
•  input instance  
•  computation 
•  solution returned 

Pros: Cons: 
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Different Representations 
of Recursive Algorithms 

Code - Implement on Computer 

Stack of Stack Frames - Run on Computer 

Tree of Stack Frames - View entire computation 

Friends & Strong Induction - Worry about one step at a time. 

Pros Views 
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X = 2133 
Y = 2312 
ac = 483 
bd = 396 
(a+b)(c+d) = 1890 
XY = 4931496 

X = 21 
Y = 23 
ac = 4 
bd = 3 
(a+b)(c+d) = 15 
XY = 483 

X  = 33 
Y = 12 
ac = 3 
bd = 6 
(a+b)(c+d) = 18 
XY = 396 

X = 54 
Y = 35 
ac = 15 
bd = 20 
(a+b)(c+d) = 72 
XY = 1890 

X = 2 
Y = 2 
XY=4 

X = 1 
Y = 3 
XY=3 

X = 3 
Y = 5 
XY=15 

X = 3 
Y = 1 
XY=3 

X = 3 
Y = 2 
XY=6 

X = 6 
Y = 3 
XY=18 

X = 5 
Y = 3 
XY=15 

X = 4 
Y = 5 
XY=20 

X = 9 
Y = 8 
XY=72 

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Friends & Strong Induction 
One Friend for each 

stack frame. 
Each worries only 

about his job.   
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X = 2133 
Y = 2312 
ac = 483 
bd = 396 
(a+b)(c+d) = 1890 
XY = 4931496 

X = 21 
Y = 23 
ac = 4 
bd = 3 
(a+b)(c+d) = 15 
XY = 483 

X  = 33 
Y = 12 
ac = 3 
bd = 6 
(a+b)(c+d) = 18 
XY = 396 

X = 54 
Y = 35 
ac = 15 
bd = 20 
(a+b)(c+d) = 72 
XY = 1890 

X = 2 
Y = 2 
XY=4 

X = 1 
Y = 3 
XY=3 

X = 3 
Y = 5 
XY=15 

X = 3 
Y = 1 
XY=3 

X = 3 
Y = 2 
XY=6 

X = 6 
Y = 3 
XY=18 

X = 5 
Y = 3 
XY=15 

X = 4 
Y = 5 
XY=20 

X = 9 
Y = 8 
XY=72 

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Friends & Strong Induction 
Worry about one 

step at a time. 
Imagine that you 
are one specific 

friend.   
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X  = 33 
Y = 12 
ac =  
bd =  
(a+b)(c+d) =  
XY =  

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Friends & Strong Induction 

• Consider your input instance 
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X  = 33 
Y = 12 
ac = ? 
bd = ? 
(a+b)(c+d) =  
XY =  

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Friends & Strong Induction 

• Consider your input instance 

• Allocate work  

• Construct one or more subinstances 

X = 3 
Y = 1 
XY=? 

X = 3 
Y = 2 
XY=? 

X = 6 
Y = 3 
XY=? 
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X  = 33 
Y = 12 
ac = 3 
bd = 6 
(a+b)(c+d) = 18 
XY =  

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Friends & Strong Induction 

• Consider your input instance 

• Allocate work  

• Construct one or more subinstances 

• Assume by magic your friends give you 
the answer for these. 

 

X = 3 
Y = 1 
XY=3 

X = 3 
Y = 2 
XY=6 

X = 6 
Y = 3 
XY=18 
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X  = 33 
Y = 12 
ac = 3 
bd = 6 
(a+b)(c+d) = 18 
XY = 396 

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Friends & Strong Induction 

• Consider your input instance 

• Allocate work  

• Construct one or more subinstances 

• Assume by magic your friends give you 
the answer for these. 

• Use this help to solve your own instance. 

X = 3 
Y = 1 
XY=3 

X = 3 
Y = 2 
XY=6 

X = 6 
Y = 3 
XY=18 
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X  = 33 
Y = 12 
ac = 3 
bd = 6 
(a+b)(c+d) = 18 
XY = 396 

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Friends & Strong Induction 

• Consider your input instance 

• Allocate work  

• Construct one or more subinstances 

• Assume by magic your friends give you 
the answer for these. 

• Use this help to solve your own instance. 

• Do not worry about anything else, e.g., 

• Who your boss is. 

• How your friends solve their instance. X = 3 
Y = 1 
XY=3 

X = 3 
Y = 2 
XY=6 

X = 6 
Y = 3 
XY=18 
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X  = 33 
Y = 12 
ac = 3 
bd = 6 
(a+b)(c+d) = 18 
XY = 396 

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Friends & Strong Induction 

This technique is often  
referred to as  

Divide and Conquer  
 

X = 3 
Y = 1 
XY=3 

X = 3 
Y = 2 
XY=6 

X = 6 
Y = 3 
XY=18 
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MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Friends & Strong Induction 

Consider generic instances. 

ac bd (a+b)(c+d) 

MULT(X,Y): 
Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

MULT(X,Y): 
If |X| = |Y| = 1 then RETURN XY 
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X = 2133 
Y = 2312 
ac = 483 
bd = 396 
(a+b)(c+d) = 1890 
XY = 4931496 

X = 21 
Y = 23 
ac = 4 
bd = 3 
(a+b)(c+d) = 15 
XY = 483 

X  = 33 
Y = 12 
ac = 3 
bd = 6 
(a+b)(c+d) = 18 
XY = 396 

X = 54 
Y = 35 
ac = 15 
bd = 20 
(a+b)(c+d) = 72 
XY = 1890 

X = 2 
Y = 2 
XY=4 

X = 1 
Y = 3 
XY=3 

X = 3 
Y = 5 
XY=15 

X = 3 
Y = 1 
XY=3 

X = 3 
Y = 2 
XY=6 

X = 6 
Y = 3 
XY=18 

X = 5 
Y = 3 
XY=15 

X = 4 
Y = 5 
XY=20 

X = 9 
Y = 8 
XY=72 

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Friends & Strong Induction 
This solves the 

problem for every 
possible instance.   
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Friends & Strong Induction 

Recursive Algorithm: 
• Assume you have an algorithm that works. 
• Use it to write an algorithm that works. 
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Friends & Strong Induction 

Recursive Algorithm: 
• Assume you have an algorithm that works. 
• Use it to write an algorithm that works. 

If I could get in, 
I could get the key. 

Then  I could unlock the door  
so that I can get in. 

 
Circular Argument! 
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Friends & Strong Induction 

Recursive Algorithm: 
• Assume you have an algorithm that works. 
• Use it to write an algorithm that works. 

To get into my house 
I must get the key from a smaller house 
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X  = 33 
Y = 12 
ac = ? 
bd = ? 
(a+b)(c+d) =  
XY =  

MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Friends & Strong Induction 

 
• Allocate work  

• Construct one or more 
subinstances 

X = 3 
Y = 1 
XY=? 

X = 3 
Y = 2 
XY=? 

X = 6 
Y = 3 
XY=? 

Each subinstance must be  
a smaller instance 

to the same problem. 
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Friends & Strong Induction 

Recursive Algorithm: 
• Assume you have an algorithm that works. 
• Use it to write an algorithm that works. 

Use brute force  
to get into  
the smallest house. 
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MULT(X,Y): 
 If |X| = |Y| = 1 then RETURN XY 

 Break X into a;b and Y into c;d 

 e = MULT(a,c) and f =MULT(b,d) 

 RETURN   

  e 10n + (MULT(a+b, c+d) – e - f) 10n/2 + f 

Friends & Strong Induction 

MULT(X,Y): 
If |X| = |Y| = 1 then RETURN XY 

Use brute force  
to solve the base case 
instances. 
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Friends & Strong Induction 
Carefully write the specifications for the problem.   

Preconditions: Set of legal instances 
(inputs) 

 

Why? 

 

Postconditions: 

 

Required output 
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Friends & Strong Induction 
Carefully write the specifications for the problem.   

Preconditions: Set of legal instances 
(inputs) 

 

• To be sure that we solve the 
problem for every legal instance. 

• So that we know  

– what we can give to a 
friend. 

Postconditions: Required output • So that we know  

– what is expected of us. 

– what we can expect from 
our friend. 

Related to Loop Invariants 



Applications of Recursion 

Another Numerical Computation Example 
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•  Given two integers, what is 
their greatest common divisor? 

•  e.g., gcd(56,24) =  

The Greatest Common Divisor (GCD) Problem 

 divides d a↔

8

Given 
N

, :
otation:

|
d a

d a
∈¢

:k a kd↔ ∃ ∈ =¢

( )|  a
Imp

nd 
ortant Property:

| | ,d a d b d ax by x y→ + ∀ ∈¢

 All integers divide 0: |Note 0: d d∀ ∈¢
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Euclid’s Trick 

gcd( , ) gc 2d( , )a b a b b= −

gcd( ,
C

) gcd( ,
onseque :

)
nce

a b a b b= −

gcd( , ) gc 3d( , )a b a b b= −

. .,e g

( )|  a
Imp

nd 
ortant Property:

| | ,d a d b d ax by x y→ + ∀ ∈¢

Use this property to make the GCD problem eaId sea: ier!

Good! 

Better! 

Too Far! 

M
optiWhat mal is the  choice?

gcd( , ) gc modd( , )a b a b b= modgcd 56,24 56 24( ) gcd( ) gcd(,24 8 4),2= =

56,24 56 3 24gcd( ) ,24gcd( ) gc )6, 4d( 1 2− × −= =

56,24 56 2 24,24gcd( ) gcd( ) gcd(8,24)= =− ×

56,24 56 24,2gcd( ) gcd( ) gcd( )4 32,24−= =

Euclid of Alexandria,  
"The Father of Geometry"  
c. 300 BC 
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Euclid’s Algorithm (circa 300 BC) 

<Precondition:  and  are positive integers>
<Postcondition

if 0 th

Euclid(a,b)

  
return(

en

else

: returns gcd( , )>

)

return(Euclid( , od ))
 

m

a

b

b

a

a

b
b

b

a
=

 met, siPrecondi nce moti don a b∈¢
Postcondition met, since

2. Otherwise, gcd( , ) gcd( , mod )a b b a b=

3. Algorithm halts, since 0 mod  a b b≤ <

1. 0 gcd( , ) gcd( ,0)b a b a a= → = =



End of Lecture 8 
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Time Complexity 

return(

E

)

uclid(a,
if 0 then

else
return(Euclid( , mod ))

b
  

 

)

a

b a b

b =

2nd argument drops by factor of at least 2 every 2 iteraC tlaim: ions.
Proof:
Iteration Arg 1 Arg 2

1 mod
2 mod mod( mod )

i a b
i b a b
i a b b a b
+

+

≤ < ≤ mod / 2. Then mod( moCa dse ) d / 2 o1 m: a b b b a b a b b

 mod / 2. Then mod( mod ) /Case 2: 2 b a b b b a b b> > <
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Time Complexity 

return(

E

)

uclid(a,
if 0 then

else
return(Euclid( , mod ))

b
  

 

)

a

b a b

b =

Let total number of recursive calls to Euclid.k =

Each stackframe must compute mod ,  which takes more than constant time.a b

2It can be shown that the resulting time complexity is ( ) ( ).T n O n∈

Let input size number of bits used to represent  and .n a b= ;
/2 /2Then 2 2 .k nb k n→; ; ;



Applications of Recursion 

Data Organization 



A Simple Example: 

The Tower of Hanoi 
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Tower of Hanoi 

 This job of mine 
is a bit daunting. 
Where do I start? 

And I am lazy. 
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Tower of Hanoi 

At some point, 
the biggest disk 

moves. 
I will do that job. 
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Tower of Hanoi 

To do this,  
the other disks 
must be in the 

middle. 
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Tower of Hanoi 

How will these 
move? 

I will get a 
friend to do it. 
And another to 

move these. 
I only move the 

big disk. 
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Tower of Hanoi 
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Tower of Hanoi 

Time:  
T(1) = 1,  
T(n) = 
        ≈ 2(2T(n-2))  
        ≈ 4(2T(n-3)) 

≈ 2T(n-1) 
≈ 4T(n-2) 
≈ 8T(n-3) 
≈ 2i T(n-i) 
≈ 2n 

1 + 2T(n-1) 



More Data Organization Examples 

Sorting 
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Recursive Sorts 

•  Given list of objects to be sorted  

•  Split the list into two sublists.  

 

•  Recursively have a friend sort the two sublists.  

•  Combine the two sorted sublists into one entirely sorted list.  



Example:  Merge Sort 
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Merge Sort 

88 14 
98 25 

62 

52 

79 

30 
23 

31 

Divide and Conquer  
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Merge Sort 

88 14 
98 25 

62 

52 

79 

30 
23 

31 
Split Set into Two 

 (no real work) 

25,31,52,88,98 

Get one friend to  
sort the first half.  

14,23,30,62,79 

Get one friend to  
sort the second half.  
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Merge Sort 

Merge two sorted lists into one  

25,31,52,88,98 

14,23,30,62,79 

14,23,25,30,31,52,62,79,88,98 
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Merge Sort 

Time: T(n) = 
 = Θ(n log(n)) 

2T(n/2) + Θ(n) 



Example:  Quick Sort 
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Quick Sort 

88 14 
98 25 

62 

52 

79 

30 
23 

31 

Divide and Conquer  
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Quick Sort 

88 14 
98 25 

62 

52 

79 

30 
23 

31 

Partition set into two using  
randomly chosen pivot 

14 

25 
30 

23 31 

88 98 
62 

79 
≤ 52 ≤ 
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Quick Sort 

14 

25 
30 

23 31 

88 98 
62 

79 
≤ 52 ≤ 

14,23,25,30,31 

Get one friend to  
sort the first half.  

62,79,98,88 

Get one friend to  
sort the second half.  
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Quick Sort 

14,23,25,30,31 

62,79,98,88 
52 

Glue pieces together. 
  (No real work) 

14,23,25,30,31,52,62,79,88,98 
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Quick Sort 

88 14 
98 25 

62 

52 

79 

30 
23 

31 

Let pivot be the first  
element in the list? 

14 

25 
30 

23 

88 98 
62 

79 
≤ 31 ≤ 

52 
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Quick Sort 

≤ 14 ≤ 

14,23,25,30,31,52,62,79,88,98 

23,25,30,31,52,62,79,88,98 

If the list is already sorted,  
then the list is worst case unbalanced. 
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Quick Sort 

Best Time: 

Worst Time: 

Expected Time: 

T(n) = 2T(n/2) + Θ(n) 
        = Θ(n log(n)) 
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Quick Sort 

T(n) = 2T(n/2) + Θ(n) 
        = Θ(n log(n)) 

Best Time: 

Worst Time: 

Expected Time: 

= Θ(n2) 
T(n) = T(1) + T(n-1) + Θ(n) 
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Quick Sort 

T(n) = 2T(n/2) + Θ(n) 
        = Θ(n log(n)) 

Best Time: 

T(n) = T(0) + T(n-1) + Θ(n) Worst Time: 

Expected Time: 

= Θ(n2) 

T(n) = Θ(nlog(n)) 
(The proof is not difficult, but it’s a little long) 
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Expected Time Complexity for Quick Sort 

 Why is it reasonable to expect ( log ) time complex tQ: i y?n nΘ

 Because on average, the partition is not too unbalanA: ced.

− − ∈ + =

Example: Imagine a deterministic partition, 
in which the 2 subsets are always in fixed proportion, i.e.,

( 1) & ( 1), where ,  are constants, , [0...1], 1.p n q n p q p q p q

( 1)p n − ( 1)q n −
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Expected Time Complexity for Quick Sort 

( 1)p n − ( 1)q n −

Then ( ) ( ( 1)) ( ( 1)) ( )T n T p n T q n n= − + − +Θ

>

∈Θ

= → =

wlog, suppose that .
Then recursion tree has depth k (log ) :

1 log / log(1 / )k

q p
n

q n k n q

( ) work done per level ( ) ( log ).n T n n nΘ → = Θ
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Properties of QuickSort 

•  In-place? 

•  Stable? 

•  Fast? 
–  Depends. 

–  Worst Case: 

–  Expected Case: 

 
 

2( )nΘ

( log ), with small constantsn nΘ
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Heaps, Heap Sort, & 
Priority Queues 
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Heapsort 

•  O(nlogn) worst case – like merge sort 

•  Sorts in place – like insertion sort 

•  Combines the best of both algorithms 
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Heap Definition (MaxHeap) 

•  Balanced binary tree 

•  The value of each node  ≥ each of the node's children.   

•  Left or right child could be next largest. 

Where can 1 go? 
Maximum is at root. 

Where can 8 go? 

Where can 9 go? 
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Some Additional Properties of Heaps 

The height  of a node  of the heap is the number of edges on the
 simple downard path from the node

( )
longe  to a l a .st e f

h i i

h = 0 

h = 1 

h = 0 

h = 2 h = 1 

h = 3 

The height  of a heap is the height of the root.H
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Some Additional Properties of Heaps 

2An -element heap has height logH nn = ⎢ ⎥⎣ ⎦

i = 1 

i = 2 

i = 3 

i = 4 i = 5 i = 6 i = 7 

i = 8 i = 9 
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Some Additional Properties of Heaps 

A heap of height  has at least 2  nodes.HH n =

i = 1 

i = 2 

i = 3 

i = 4 i = 5 i = 6 i = 7 

i = 8 i = 9 

1A heap of height  has at most 2 -1 nodes.HH n +=
12 2 1H Hn +≤ ≤ −
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Heap Data Structure 
Balanced Binary Tree Implemented by an Array 
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Make Heap 

Get help from friends 
Now we are just left with this problem 
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Heapify 

? 
Maximum must be at root. Where should the maximum be? 

<pre-cond>:  Left and right subtrees of A[i] are max heaps. 
<post-cond>: Subtree rooted at i is a heap. 

Max-Heapify(A, i, n) 

i 
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Find the maximum. 

? 

Repeat 

Heapify 

<pre-cond>:  Left and right subtrees of A[i] are max heaps. 
<post-cond>: Subtree rooted at i is a heap. 

Max-Heapify(A, i, n) 

i 
Put it in place 
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Heap 

Running Time: 

Heapify 

<pre-cond>:  Left and right subtrees of A[i] are max heaps. 
<post-cond>: Subtree rooted at i is a heap. 

Max-Heapify(A, i, n) 
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<pre-cond>:  Left and right subtrees of A[i] are max heaps. 
<post-cond>: Subtree rooted at i is a heap. 

Max-Heapify(A, i, n) 

e.g.,  Max-Heapify (A,2,10) 

 Max-Heapify (A,4,10) 

 Max-Heapify (A,9,10) 



End of Lecture 9 
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MakeHeap 

•  MakeHeap uses Max-Heapify to reorganize the tree from 
bottom to top to make it a heap. 

•  MakeHeap can be written concisely in either recursive or 
iterative form. 
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<pre-cond>:A[i n] is a balanced binary tree
<post-cond>:The subtree rooted at
if /4  

( , ( ), )
( , ( ), )

Max-Hea

  is a hea

M

pify

akeHeap

p

(

)

)

(

,

, ,

,

i n then
MakeHeap A LEFT i n
MakeHe

i

ap A RIGHT i

A i n

n
A i n

≤ ⎢ ⎥⎣ ⎦

K

Recursive MakeHeap 

T(n) = 2T(n/2) + log(n) 

Running time: 

= Θ(n) 
i 

n 

p/2  is  of arentn n⎢ ⎥⎣ ⎦

grandp/4  is  ot f arenn n⎢ ⎥⎣ ⎦

Invoke as MakeHeap (A, 1, n) 
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<pre-cond>:A[i n] is a balanced binary tree
<post-cond>:The subtree rooted at
if /4  

( , ( ), )
( , ( ), )

Max-Hea

  is a hea

M

pify

akeHeap

p

(

)

)

(

,

, ,

,

i n then
MakeHeap A LEFT i n
MakeHe

i

ap A RIGHT i

A i n

n
A i n

≤ ⎢ ⎥⎣ ⎦

K

Recursive MakeHeap 

i 

n 

p/2  is  of arentn n⎢ ⎥⎣ ⎦

grandp/4  is  ot f arenn n⎢ ⎥⎣ ⎦

Question from last class:  what if i = 4?? 
What then is n?? 
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Recursive MakeHeap 

i = 1 

i = 2 i = 3 

i = 4 

n = ? 

i = 5 i = 6 i = 7 
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Heaps Heap 
? 

<pre-cond>:A[1 n] is a balanced binary tree
<post-cond>:A[1 n] is a heap

: All subtrees roo
fo

te

M

r /2  downto 1

Max-Heap
d 

ify( , , )

akeHeap(

at 1  are heaps

, )

LI i n
i n

A i

n

n

A

←

<

⎢ ⎥⎣
> +

⎦

K
K

K

<pre-cond>:  Left and right subtrees of A[i] are max heaps. 
<post-cond>: Subtree rooted at i is a heap. 

Max-Heapify(A, i, n) 

Iterative MakeHeap 
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<pre-cond>:  Left and right subtrees of A[i] are max heaps. 
<post-cond>: Subtree rooted at i is a heap. 

Max-Heapify(A, i, n) 

Iterative MakeHeap 

? 
Heap 

<pre-cond>:A[1 n] is a balanced binary tree
<post-cond>:A[1 n] is a heap

: All subtrees roo
fo

te

M

r /2  downto 1

Max-Heap
d 

ify( , , )

akeHeap(

at 1  are heaps

, )

LI i n
i n

A i

n

n

A

←

<

⎢ ⎥⎣
> +

⎦

K
K

K
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<pre-cond>:  Left and right subtrees of A[i] are max heaps. 
<post-cond>: Subtree rooted at i is a heap. 

Max-Heapify(A, i, n) 

Iterative MakeHeap 

? 
Heap 

<pre-cond>:A[1 n] is a balanced binary tree
<post-cond>:A[1 n] is a heap

: All subtrees roo
fo

te

M

r /2  downto 1

Max-Heap
d 

ify( , , )

akeHeap(

at 1  are heaps

, )

LI i n
i n

A i

n

n

A

←

<

⎢ ⎥⎣
> +

⎦

K
K

K
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<pre-cond>:  Left and right subtrees of A[i] are max heaps. 
<post-cond>: Subtree rooted at i is a heap. 

Max-Heapify(A, i, n) 

Iterative MakeHeap 

? 

<pre-cond>:A[1 n] is a balanced binary tree
<post-cond>:A[1 n] is a heap

: All subtrees roo
fo

te

M

r /2  downto 1

Max-Heap
d 

ify( , , )

akeHeap(

at 1  are heaps

, )

LI i n
i n

A i

n

n

A

←

<

⎢ ⎥⎣
> +

⎦

K
K

K
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<pre-cond>:  Left and right subtrees of A[i] are max heaps. 
<post-cond>: Subtree rooted at i is a heap. 

Max-Heapify(A, i, n) 

Iterative MakeHeap 

Heap 

<pre-cond>:A[1 n] is a balanced binary tree
<post-cond>:A[1 n] is a heap

: All subtrees roo
fo

te

M

r /2  downto 1

Max-Heap
d 

ify( , , )

akeHeap(

at 1  are heaps

, )

LI i n
i n

A i

n

n

A

←

<

⎢ ⎥⎣
> +

⎦

K
K

K
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Iterative MakeHeap 

Runtime:

2Height of heap log n= ⎢ ⎥⎣ ⎦

+

⎡ ⎤
≤ ⎢ ⎥
⎢ ⎥

1It can be shown that the number of nodes at height  
2h
nh

Time to heapify from node at height h ( )O h∈

⎢ ⎥⎣ ⎦

+
=

⎡ ⎤→ = ⎢ ⎥⎢ ⎥
∑

2log

1
0

( ) ( )
2

n

h
h

nT n O h
⎢ ⎥⎣ ⎦

=

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑

2log

0 2

n

h
h

hO n ( )=O n

<pre-cond>:A[1 n] is a balanced binary tree
<post-cond>:A[1 n] is a heap

: All subtrees roo
fo

te

M

r /2  downto 1

Max-Heap
d 

ify( , , )

akeHeap(

at 1  are heaps

, )

LI i n
i n

A i

n

n

A

←

<

⎢ ⎥⎣
> +

⎦

K
K

K
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Iterative MakeHeap 

•  Recursive and Iterative MakeHeap do essentially the 
same thing:  Heapify from bottom to top. 

•  Difference: 
–  Recursive is “depth-first” 
–  Iterative is “breadth-first” 



Using Heaps for Sorting 
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Selection Sort 

Largest i values are sorted on the right. 
Remaining values are off to the left. 

6,7,8,9 < 
3 

4 
1 
5 

2 

Max is easier to find if a heap. 
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4 3 

1 2 

Heap Sort 

Largest i values are sorted on side. 
Remaining values are in a heap. 

<pre-cond>:A[1...n] is a list of keys
<post-cond>:A[1...n] is sorted in non-decr

HeapS

easin

or

g 

t( , )

order

A n
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4 3 

1 2 

4 3 

1 2 

Heap Data Structure 

Heap Array 

5 4 3 1 2 

9 8 

7 6 

Heap 

Array 
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Heap Sort 
Largest i values  
are sorted on side. 
Remaining values are 
in a heap 

Put next value  
where it belongs. 

Heap 

? 

<pre-cond>:  Left and right subtrees of A[i] are max heaps. 
<post-cond>: Subtree rooted at i is a heap. 

Max-Heapify(A, i, n) 
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Heap Sort 
? 

? ? 

? ? 

? ? 

Sorted 
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Heap Sort 
<pre-cond>:A[1...n] is a list of keys
<post-cond>:A[1...n] is sorted in non-decreasing order

: [1 ] is a he

HeapSor

ap
[

M

t

akeHeap(A,n)

1 ] contains the largest keys in n

for  dow

on-dec

nt  

r

( ,

o 2

)

LI A i
A i

A

n

i

n

n
< >

+

←

K
K

exchange [1] [ ]
Max-H

easing

eapify

 orde

( ,1,

r

1)
A A i

A i
↔

−

Running Time: 



Other Applications of Heaps 
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Priority Queue 

•  Maintains dynamic set, A, of n elements, each with a key. 

•  Max-priority queue supports: 

1. MAXIMUM(A) 

2. EXTRACT-MAX(A, n) 

3.  INCREASE-KEY(A, i, key) 

4.  INSERT(A, key, n) 

•  Example Application:  Schedule jobs on a shared computer. 
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Priority Queues cont’d... 

•  MAXIMUM(A): 

•  EXTRACT-MAX(A,n): 
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Priority Queue cont’d... 

•  INCREASE-KEY(A, i, key): 

•  INSERT(A, key, n): 
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Binary  Search Trees 

•  Support many dynamic-set operations 

•  Basic operations take time proportional to height h of 
tree. 

(log ) for balanced treenΘ

( ) for worst-cased unbalanced treenΘ
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38 

25 

17 

4 21 

31 

28 35 

51 

42 

40 49 

63 

55 71 

Binary Search Tree 

Left children  ≤  Node  ≤  Right children  
 

≤ ≤ 
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BST Data Structure 
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Insertion 

<pre-cond>:  is a BST,  a node to be inserted
<post-cond>:  is

Tree-Inser

 a BST wit

t( ,

h  insert

)

ed
T z

T z

T z
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38 

25 

17 

4 21 

31 

28 35 

51 

42 

40 49 

63 

55 71 

Insertion 
=[ ] 36key z? 

36 
( ) ( )T n h= Θ
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Building a Tree 

←

<pre-cond>:  is a set of nodes
<post-cond>: Returns a BST consisting of the node

NIL
fo

B

r  in 
Tree-Insert

s in 

uild-BS

,

T

( )

(Z)

T
z Z

T

Z

z

Z

For balanced tree, number of nodes inserted into tree of height  is 2hh

Time for each insertion ( )h= Θ

2log

0
Thus ( ) 2 ( )

n
h

h
T n h

⎢ ⎥⎣ ⎦

=

= Θ∑ ( log )n n= Θ
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38 

25 

17 

4 21 

31 

28 35 

51 

42 

40 49 

63 

55 71 

Searching the Tree 

•  PreConditions 
– Key       25 
– A binary search tree. 

–  PostConditions 
– Find key in BST (if there). 
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Searching the Tree 
•  Maintain a sub-tree. 

•  If the key is contained in the original tree, then the key 
is contained in the sub-tree. 

 

key 17 
38 

25 

17 

4 21 

31 

28 35 

51 

42 

40 49 

63 

55 71 
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Define Step 
•  Cut sub-tree in half. 
•  Determine which half the key would be in. 

•  Keep that half. 

 

key 17 
38 

25 

17 

4 21 

31 

28 35 

51 

42 

40 49 

63 

55 71 

If key < root, 
then key is  
in left half. 

If key > root, 
then key is  
in right half. 

If key = root, 
then key is  
found 
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Searching the Tree 
<pre-cond>:  is a BST,  is a key to search for
<post-cond>: returns the node matching  if it exist

Tree-Sea

s or NIL

rch

 ot

( , )

herwise

x k
x k

k

Runtime  ( )h= Θ
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Why use (balanced) binary search trees? 

•  What is the advantage over a sorted linear array? 
–  Search time is the same 

–  However, maintaining (inserting, deleting, modifying) is  
•  Θ(logn) for balanced BSTs 

•  Θ(n) for arrays 


