Recursive Algorithms

Introduction

Applications to Numeric Computation

Complex Numbers

- Remember how to multiply 2 complex numbers?
- $\quad(a+b i)(c+d i)=[a c-b d]+[a d+b c] i$
- Input: a,b,c,d Output: ac-bd, ad+bc
- If a real multiplication costs $\$ 1$ and an addition cost a penny, what is the cheapest way to obtain the output from the input?
- Can you do better than $\$ 4.02$?

Gauss' Method:

- Input: a,b,c,d Output: ac-bd, ad+bc
- $\mathrm{m}_{1}=\mathrm{ac}$
- $\mathrm{m}_{2}=\mathrm{bd}$

Total Cost? \$3.05!

Johann Carl Friedrich Gauss
(* 30. April 1777 in Braunschweig
† 23. Februar 1855 in Göttingen)

- $\mathrm{A}_{1}=\mathrm{m}_{1}-\mathrm{m}_{2}=a c-b d$
- $m_{3}=(a+b)(c+d)=a c+a d+b c+b d$
- $A_{2}=m_{3}-m_{1}-m_{2}=a d+b c$

Question

- The Gauss method saves one multiplication out of four. It requires 25\% less work.
- Could there be a context where performing 3 multiplications for every 4 provides a more dramatic savings?
- Let's back up a bit.

How to add 2 n-bit numbers.

$+$| $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ |

How to add 2 n-bit numbers.

$\underbrace{+$| $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ | $*$ |
| $*$ | | | | | | | |}

How to add 2 n-bit numbers.

How to add 2 n-bit numbers.

How to add 2 n-bit numbers.

How to add 2 n -bit numbers.

Time complexity of grade school addition


```
    * * * * * * * * * * * *
```


On any reasonable computer adding 3 bits can be done in constant time.

$$
\rightarrow T(n) \in \mathrm{O}(n)
$$

Is there a faster way to add?

- QUESTION: Is there an algorithm to add two n-bit numbers whose time grows sub-linearly in n ?

Any algorithm for addition must read all of the input bits

- Suppose there is a mystery algorithm that does not examine each bit
- Give the algorithm a pair of numbers. There must be some unexamined bit position i in one of the numbers
- If the algorithm returns the wrong answer, we have found a bug
- If the algorithm is correct, flip the bit at position i and give the algorithm this new input.
- The algorithm must return the same answer, which now is wrong.

So any algorithm for addition must use time at least linear in the size of the numbers.

Grade school addition is essentially as good as it can be.

How to multiply 2 n-bit numbers.

$* * * * * * * *$
$* * * * * * * *$

How to multiply 2 n -bit numbers.

$\boldsymbol{*}$| $* * * * * * * *$ |
| :--- |
| $* * * * * * * *$ |

I get it! The total time is bounded by cn^{2}.

How to multiply 2 n-bit numbers: Kindergarten Algorithm

Grade School Addition: Linear time

 Grade School Multiplication: Quadratic time Kindergarten Multiplication: Exponential time
\# of bits in numbers

End of Lecture 6

Neat! We have demonstrated that multiplication is a harder problem than addition.

Mathematical confirmation of our common sense.

Don't jump to conclusions!

We have argued that grade school multiplication uses more time than grade school addition. This is a comparison of the complexity of two algorithms.

To argue that multiplication is an inherently harder problem than addition we would have to show that no possible multiplication algorithm runs in linear time.

Grade School Addition: $\theta(\mathrm{n})$ time Grade School Multiplication: $\theta\left(\mathrm{n}^{2}\right)$ time

Is there a clever algorithm to multiply two numbers in linear time?

Is there a faster way to multiply two numbers than the way you learned in grade school?

Recursive Divide And Conquer

- DIVIDE a problem into smaller subproblems
- CONQUER them recursively
- GLUE the answers together so as to obtain the answer to the larger problem

Multiplication of 2 n -bit numbers

$\begin{aligned} \cdot X= & a \\ \cdot & b \\ & c \\ & \cdot X=a 2^{n / 2}+b \\ & Y=c 2^{n / 2}+d \\ & \cdot X Y=a c 2^{n}+(a d+b c) 2^{n / 2}+b d\end{aligned}$

Multiplication of 2 n -bit numbers

- $X=$

a

b

- $Y=$
c
d
- $X Y=a c 2^{n}+(a d+b c) 2^{n / 2}+b d$
$\operatorname{MULT}(X, Y)$:
If $|X|=|Y|=1$ then RETURN $X Y$
Break X into $a ; b$ and Y into $c ; d$ RETURN
$\operatorname{MULT}(a, c) 2^{n}+(\operatorname{MULT}(a, d)+\operatorname{MULT}(b, c)) 2^{2 n / 2}+\operatorname{MULT}(b, d)$

Time required by MULT

- $T(n)=$ time taken by MULT on two n-bit numbers
- What is $T(n)$?

Recurrence Relation

- $T(1)=k$ for some constant k
- $T(n)=4 T(n / 2)+k^{\prime} n+k$ " for some constants k ' and $k "$

MULT(X,Y):
If $|X|=|Y|=1$ then RETURN $X Y$
Break X into $a ; b$ and Y into $c ; d$
RETURN
$\operatorname{MULT}(a, c) 2^{n}+(\operatorname{MULT}(a, d)+\operatorname{MULT}(b, c)) 2^{n / 2}+\operatorname{MULT}(b, d)$

For example

- $T(1)=1$
- $T(n)=4 T(n / 2)+n$
- How do we unravel $T(n)$ so that we can determine its growth rate?

Technique 1: (Substitution)

- Recurrence: $T(1)=1$

$$
T(n)=4 T(n / 2)+n, n=2,4,8 \mathrm{~K}
$$

- Guess:
(*) $T(n)=2 n^{2}-n$
- Proof:
$\left(^{*}\right) \rightarrow T(1)=2-1=1$
Now suppose (${ }^{*}$) is satisfied for $n / 2$.
$\rightarrow T(n / 2)=2(n / 2)^{2}-n / 2=n^{2} / 2-n / 2$
Then by the recurrence relation,
$T(n)=4 T(n / 2)+n=2 n^{2}-2 n+n=2 n^{2}-n$.
Thus (*) is also satisfied for n

Technique 2: Recursion Tree

$$
n \sum_{i=0}^{\log n} 2^{i}=n\left(2^{\log n+1}-1\right)=n(2 n-1)=2 n^{2}-n \in \Theta\left(n^{2}\right)
$$

Divide and Conquer MULT: $\theta\left(n^{2}\right)$ time Grade School Multiplication: $\theta\left(\mathrm{n}^{2}\right)$ time

All that work for nothing!

MULT revisited

$\operatorname{MULT}(X, Y):$
If $|X|=|Y|=1$ then RETURN XY
Break X into $a ; b$ and Y into $c ; d$
RETURN
$\operatorname{MULT}(a, c) 2^{n}+(\operatorname{MULT}(a, d)+\operatorname{MULT}(b, c)) 2^{n / 2}+\operatorname{MULT}(b, d)$

- MULT calls itself 4 times. Can you see a way to reduce the number of calls?

Gauss' Idea: Input: a,b,c,d Output: ac, ad+bc, bd

- $\mathrm{A}_{1}=\mathrm{ac}$
- $\mathrm{A}_{3}=\mathrm{bd}$
- $m_{3}=(a+b)(c+d)=a c+a d+b c+b d$
- $A_{2}=m_{3}-A_{1}-A_{3}=a d+b c$

Gaussified MULT (Karatsuba 1962)

MULT(X,Y):

If $|X|=|Y|=1$ then RETURN $X Y$
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN $e 2^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 2^{n / 2}+f$

$$
T(n)=3 T(n / 2)+n
$$

(More precisely: $T(n)=2 T(n / 2)+T(n / 2+1)+k n)$

0	n
	$n / 2+n / 2+n / 2$
2	$n / 4+n / 4$
	Level i is the sum of 3^{i} copies of $n / 2^{i}$

$\log _{2} \mathrm{n}$	$\begin{aligned} & 1+1 \\ & +1+1+1 \end{aligned}$

Dramatic improvement for large n

 Not just a 25% savings!$$
\theta\left(\mathbf{n}^{2}\right) \text { vs } \theta\left(\mathbf{n}^{1.58 . .}\right)
$$

Grade-School Multiplication

n^{2} multiplies $+n^{2}$ additions
$\rightarrow T(n) ; 2 n^{2}$ bit operations X

Gaussified MULT (Karatsuba 1962)

MULT(X,Y):

If $|X|=|Y|=1$ then RETURN $X Y$
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN $e^{2 n}+(\operatorname{MULT}(a+b, c+d)-e-f) 2^{n / 2}+f$ $\dagger \uparrow \quad \dagger \quad \dagger 1 \dagger 1$

$$
T(n) \approx 3 T(n / 2)+k n
$$

What is k ? e.g., $\mathrm{k}=8$

Dramatic improvement for large n

Not just a 25\% savings!

$$
\theta\left(2 \mathbf{n}^{2}\right) \text { vs } \theta\left(8 \mathbf{n}^{1.58 . .}\right)
$$

Example:
A networking simulation requires 10 million multiplications of 16-bit integers.
Suppose that each bit operation takes 4 picosec on your machine (realistic).
Grade School Multiplication Time = 2 days 9 hours (do it over the weekend!)
Karatsuba Multiplication Time $=5.4$ minutes (just enough time to grab a coffee!)
MATLAB takes 0.07 seconds on my machine (don't blink!)

Multiplication Algorithms

Kindergarten	n^{n}
Grade School	n^{2}
Karatsuba	$\mathrm{n}^{1.58 \ldots}$
Fastest Known	n logn loglogn
(Schönhage-Strassen algorithm, 1971)	

What a difference a single recursive call makes!

- What are the underlying principles here?
- How can we systematically predict which recursive algorithms are going to save time, and which are not?

Recurrence Relations

$$
\begin{gathered}
T(1)=1 \\
T(n)=a T(n / b)+f(n)
\end{gathered}
$$

Recurrence Relations ₹ Time of Recursive Program

procedure Eg(int n)
if $(n \leq 1)$ then
put "Hi"
else
loop $i=1$..f(n)
put "Hi"
loop $\mathrm{i}=1$..a
Eg(n/b)

- Recurrence relations arise from the timing of recursive programs.
- Let T(n) be the \# of "Hi"s on an input of "size" n.

Recurrence Relations \approx Time of Recursive Program

procedure Eg(int n)

if $(\mathrm{n} \leq 1)$ then

Given size 1, the program outputs $T(1)=1$ Hi's.
else
loop $i=1 . . f(n)$
Given size n, the stackframe outputs $f(n)$ Hi's.
loop i=1...a
$E g(n / b)$ Recursing on a instances of size n / b generates $a T(n / b)$ " Hi "s.

For a total of $T(1)=1 ; T(n)=a \cdot T(n / b)+f(n)$ "Hi"s.

Technique 1: (Substitution)

- Recurrence: $T(1)=1$

$$
T(n)=4 T(n / 2)+n, n=2,4,8 \mathrm{~K}
$$

- Guess: (*) $T(n)=2 n^{2}-n$
- Proof:
$\left(^{*}\right) \rightarrow T(1)=2-1=1$
Now suppose (${ }^{*}$) is satisfied for $n / 2$.
$\rightarrow T(n / 2)=2(n / 2)^{2}-n / 2=n^{2} / 2-n / 2$
Then by the recurrence relation,
$T(n)=4 T(n / 2)+n=2 n^{2}-2 n+n=2 n^{2}-n$.
Thus (${ }^{*}$) is also satisfied for n

More Generally, and Formally

$T(1)=1 \& T(n)=4 T(\lfloor n / 2\rfloor)+n$
Hypothesis: $T(n)=\Theta\left(n^{2}\right) \quad$ i.e., $\exists c_{1}, c_{2}, n_{0}>0: \forall n \geq n_{0}, c_{1} n^{2} \leq T(n) \leq c_{2} n^{2}$
Step 1. Lower Bound
Suppose that lower bound holds for $\lfloor i / 2\rfloor$, i.e., $c_{1}\lfloor i / 2\rfloor^{2} \leq T(\lfloor i / 2\rfloor)$
Substituting,

$$
\begin{aligned}
T(i)=4 T(\lfloor i / 2\rfloor)+i & \geq 4 c_{1}\lfloor i / 2\rfloor^{2}+i \\
& \geq 4 c_{1}\left(\frac{i-1}{2}\right)^{2}+i \\
& =4 c_{1}\left(i^{2} / 4-i / 2+1 / 4\right)+i \\
& =c_{1}\left[i^{2}-2 i+1\right]+i \quad \text { Suppose that } c_{1}=\frac{1}{2}
\end{aligned}
$$

Then $T(i) \geq \frac{1}{2}\left[i^{2}-2 i+1\right]+i=\frac{1}{2} i^{2}+\frac{1}{2} \geq \frac{1}{2} i^{2}=c_{1} i^{2}$ Thus lower bound holds for i!

To Summarize

If lower bound holds for $\lfloor i / 2\rfloor$, i.e., $c_{1}\lfloor i / 2\rfloor^{2} \leq T(\lfloor i / 2\rfloor)$ with $c_{1}=\frac{1}{2}$,

Then lower bound holds for i, i.e., $q_{i} i^{2} \leq T(i)$

Base Case

Does lower bound hold for $i=1$?
$c_{1} i^{2}=\frac{1}{2}(1)^{2}=\frac{1}{2} \leq T(i)=1$ Yes!
By induction, must also hold for $i=2,3,4,5, \ldots$

$$
\begin{aligned}
& \text { e.g., } \\
& i=1 \rightarrow i=2,3 \\
& i=2 \rightarrow i=4,5 \\
& i=3 \rightarrow i=6,7
\end{aligned}
$$

M
Follow similar process to prove upper bound.

Solving Technique 2
 Guess Form and Calculate Coefficients

-Recurrence Relation:

$$
T(1)=1 \& T(n)=4 T(n / 2)+n
$$

-Guess: $T(n)=a n^{2}+b n+c$
-Verify:

Left Hand Side	Right Hand Side
$T(1)=a+b+c$	1
$T(n)$	$4 T(n / 2)+n$
$=a n^{2}+b n+c$	$=4\left[a(n / 2)^{2}+b(n / 2)+c\right]+n$
	$=a n^{2}+(2 b+1) n+4 c$

Solving Technique 2

Guess Form and Calculate Coefficients

-Recurrence Relation:

$$
T(1)=1 \& T(n)=4 T(n / 2)+n
$$

-Guess: $T(n)=a^{2}+b n+c$
-Verify:

Left Hand Side	Right Hand Side
$T(1)=a+b+c$	1
$T(n)$	$4 T(n / 2)+n$
$=a n^{2}+b n+c$	$=4\left[a(n / 2)^{2}+b(n / 2)+c\right]+n$
$c=4 c$	$=a n^{2}+(2 b+1) n+4 c$
$\rightarrow c=0$	

Solving Technique 2

Guess Form and Calculate Coefficients

-Recurrence Relation:

$$
T(1)=1 \& T(n)=4 T(n / 2)+n
$$

-Guess: $\mathrm{T}(\mathrm{n})=\mathrm{an}^{2}+\mathrm{bn}+0$
-Verify:

Left Hand Side	Right Hand Side
$T(1)=a+b+c$	1
$T(n)$	$4 T(n / 2)+n$
$=a n^{2}+b n+c$	$=4\left[a(n / 2)^{2}+b(n / 2)+c\right]+n$
$b=2 b+1$	
$\rightarrow b=-1$	$=a n^{2}+(2 b+1) n+4 c$

Solving Technique 2

Guess Form and Calculate Coefficients

-Recurrence Relation:

$$
T(1)=1 \& T(n)=4 T(n / 2)+n
$$

-Guess: $T(n)=a n^{2}-1 n+0$
-Verify:

Left Hand Side	Right Hand Side
$T(1)=a+b+c$	1
$T(n)$	$4 T(n / 2)+n$
$=a n^{2}+b n+c$	$=4\left[a(n / 2)^{2}+b(n / 2)+c\right]+n$
	$=a n^{2}+(2 b+1) n+4 c$
$a=a$	

Solving Technique 2

Guess Form and Calculate Coefficients

-Recurrence Relation:

$$
T(1)=1 \& T(n)=4 T(n / 2)+n
$$

-Guess: $\mathrm{T}(\mathrm{n})=\mathrm{an}^{2}-1 \mathrm{n}+0 \rightarrow T(n)=2 n^{2}-n$
-Verify:

Left Hand Side	Right Hand Side
$T(1)=a+b+c$	1
$T(n)$	$4 T(n / 2)+n$
$=a n^{2}+b n+c$	$=4\left[a(n / 2)^{2}+b(n / 2)+c\right]+n$
	$=a n^{2}+(2 b+1) n+4 c$

Solving Technique 3
 Approximate Form and Calculate Exponent

-Recurrence Relation:

$$
T(1)=1 \& T(n)=a T(n / b)+f(n)
$$

which is bigger?
Guess

Solving Technique 3 Calculate Exponent

-Recurrence Relation:

$$
T(1)=1 \& T(n)=a T(n / b)+f(n)
$$

-Guess: $a T(n / b) \ll f(n)$
-Simplify: $T(n) \approx f(n)$

In this case, the answer is easy.

$$
\mathbf{T}(\mathbf{n})=\Theta(\mathbf{f}(\mathbf{n}))
$$

Solving Technique 3 Calculate Exponent

-Recurrence Relation:

$$
T(1)=1 \& T(n)=a T(n / b)+f(n)
$$

-Guess: $a T(n / b) \gg f(n)$
-Simplify: $T(n) \approx a T(n / b)$

In this case, the answer is harder.

Solving Technique 3 Calculate Exponent

-Recurrence Relation:

$$
T(1)=1 \& T(n)=a T(n / b)
$$

-Guess: $T(n)=\mathrm{cn}^{\alpha}=\mathrm{cn}^{(\log \mathrm{l} / \log \mathrm{b})}$
-Verify:

Left Hand Side	Right Hand Side
$\begin{aligned} & \mathrm{T}(\mathbf{n}) \\ & =\mathrm{fn} / \mathrm{d} \\ & 1=\mathrm{a} \mathrm{~b}^{-\alpha} \\ & \mathrm{b}^{\alpha}=\mathrm{a} \\ & \\ & \alpha \log \mathrm{~b}=\log \mathrm{a} \\ & \\ & \alpha=\log \mathrm{a} / \log \mathrm{b} \end{aligned}$	$\begin{aligned} & a T(n / b) \\ = & a\left[c(n / b)^{\alpha}\right] \\ = & \& a b^{-\alpha} \eta^{\alpha} \end{aligned}$

Solving Technique 3 Calculate Exponent

-Recurrence Relation:

$$
T(1)=1 \& T(n)=4 T(n / 2)
$$

-Guess: $\mathrm{T}(\mathrm{n})=\mathrm{cn}^{\alpha}=\mathrm{c} n^{(\log \mathrm{a} / \log \mathrm{b})}=\mathrm{Cn} n^{\log 4 / \log 2}=\mathrm{Cn}^{2}$
-Verify:

Left Hand Side	Right Hand Side
$\begin{aligned} & \mathrm{T}(\mathbf{n}) \\ & =\mathrm{fn} / \mathrm{d} \\ & 1=\mathrm{a} \mathrm{~b}^{-\alpha} \\ & \mathrm{b}^{\alpha}=\mathrm{a} \\ & \\ & \alpha \log \mathrm{~b}=\log \mathrm{a} \\ & \\ & \alpha=\log \mathrm{a} / \log \mathrm{b} \end{aligned}$	$\begin{aligned} & a T(n / b) \\ = & a\left[c(n / b)^{\alpha}\right] \\ = & \& a b^{-\alpha} \eta^{\alpha} \end{aligned}$

Solving Technique 3 Calculate Exponent

-Recurrence Relation:

$$
T(1)=1 \& T(n)=a T(n / b)+f(n)
$$

If bigger then
If bigger then

$$
\mathbf{T}(\mathbf{n})=\Theta\left(\mathrm{n}^{(\log a / \log b}\right) \quad \mathbf{T}(\mathbf{n})=\Theta(\mathbf{f}(\mathbf{n}))
$$

$$
\begin{gathered}
\text { And if } \mathbf{a T}(\mathbf{n} / \mathbf{b}) \approx \mathbf{f}(\mathbf{n}) \\
\text { what is } \mathrm{T}(\mathrm{n}) \text { then? }
\end{gathered}
$$

Technique 4: Recursion Tree Method

$\frac{T(n)}{}=a T(n / b)+f(n)$

Evaluating: $T(n)=a T(n / b)+f(n)$

Level	\# Instances				
0					
1					
2					
i					
h					

Evaluating: $T(n)=a T(n / b)+f(n)$

Level	\# Instances	Instance size			
0					
1					
2					
i					
h					

Evaluating: $T(n)=a T(n / b)+f(n)$

Level	\# Instances	Instance size			
0		n			
1					
2					
i					
h					

Evaluating: $T(n)=a T(n / b)+f(n)$

Level	\# Instances	Instance size			
0		n			
1		n / b			
2					
i					
h					

Evaluating: $T(n)=a T(n / b)+f(n)$

Level	\# Instances	Instance size			
0		n			
1		n / b			
2		$\mathrm{n} / \mathrm{b}^{2}$			
i					
h					

Evaluating: $T(n)=a T(n / b)+f(n)$

Level	\# Instances	Instance size			
0		n			
1		n / \mathbf{b}			
2		$\mathrm{n} / \mathbf{b}^{2}$			
i					
$\mathrm{n} / \mathbf{b}^{\mathbf{i}}$					
			$\mathrm{n} / \mathbf{b}^{\mathbf{h}}$		

Evaluating: $T(n)=a T(n / b)+f(n)$

Evaluating: $T(n)=a T(n / b)+f(n)$

Level	\# Instances	Instance size			
0		n			
1		n / b			
2		$\mathrm{n} / \mathbf{b}^{2}$			
i			$\mathrm{n} / \mathbf{b}^{\mathbf{i}}$		
h			$\mathrm{n} / \mathbf{b}^{\mathrm{h}=1}$		

base case

Evaluating: $T(n)=a T(n / b)+f(n)$

Level	\# Instances	Instance size			
0		n			
1		n / b			
2		$\mathrm{n} / \mathrm{b}^{2}$			
i			$\mathrm{n} / \mathrm{b}^{\mathbf{i}}$		
h			$\mathrm{n} / \mathrm{b}^{\mathrm{h}}=1$		

8

Evaluating: $T(n)=a T(n / b)+f(n)$

Level	\# Instances	Instance size			
0		n			
1		n / b			
2		n / b^{2}			
i					
$\mathrm{n}=\log n / \mathbf{b}^{\mathbf{l o g} b}$					

$$
\begin{aligned}
& \mathrm{b}^{\mathrm{h}}=\mathrm{n} \\
& \mathrm{~h} \log \mathrm{~b}=\log \mathrm{n} \\
& \mathrm{~h}=\log \mathrm{n} / \log \mathrm{b}
\end{aligned} 90
$$

Evaluating: $T(n)=a T(n / b)+f(n)$

Level	\# Instances	Instance size	Work in stack frame			
0		n				
1		n/b				
2		n / b^{2}	J			
i		n / b^{i}				
	0000000000000000					
$h=\log n / \log b$		1				

Evaluating: $T(n)=a T(n / b)+f(n)$

Level	\# Instances	Instance size	Work in stack frame		
0		n	$\mathrm{f}(\mathrm{n})$		
1		n/b	$f(n / b)$		
2		n / b^{2}	$f\left(n / b^{2}\right)$		
i		n / b^{i}	$f\left(n / b^{\text {i }}\right.$)		
	0000000000000000				
$h=\log n / \log b$		1	T(1)		

Evaluating: $T(n)=a T(n / b)+f(n)$

Level	\# Instances	Instance size	Work in stack frame	\# stack frames	
0		n	$\mathrm{f}(\mathrm{n})$		
1		n/b	$f(\mathrm{n} / \mathrm{b})$		
2		n / b^{2}	$f\left(n / b^{2}\right)$	J	
i		n / b^{i}	$\mathrm{f}\left(\mathrm{n} / \mathrm{b}^{\mathbf{i}}\right.$)		
	0000000000000000				
$h=\log n / \log b$		$n / b^{\text {h }}$	T(1)		

Evaluating: $T(n)=a T(n / b)+f(n)$

Level	\# Instances	Instance size	Work in stack frame	\# stack frames	
0		n	$\mathrm{f}(\mathrm{n})$	1	
1		n/b	$\mathrm{f}(\mathrm{n} / \mathrm{b})$	a	
2		n / b^{2}	$\mathrm{f}\left(\mathrm{n} / \mathrm{b}^{2}\right)$	a^{2}	
I		n / b^{i}	$\mathrm{f}\left(\mathrm{n} / \mathrm{b}^{\mathrm{i}}\right.$)	a^{i}	
	0000000000000000				
$h=\log n / \log b$		$n / b^{\text {h }}$	T(1)	a^{h}	

Evaluating: $T(n)=a T(n / b)+f(n)$

Evaluating: $T(n)=a T(n / b)+f(n)$

Level	\# Instances	Instance size	Work in stack frame	\# stack frames	
0		n	$\mathrm{f}(\mathrm{n})$	1	
1		n/b	$f(\mathrm{n} / \mathrm{b})$	a	
2		n / b^{2}	$f\left(n / b^{2}\right)$	a^{2}	
i		n / b^{i}	$f\left(n / b^{i}\right)$	a^{i}	
	0000000000000000				
$h=\log n / \log b$		$n / b^{\text {n }}$	T(1)	$\mathrm{a}^{\text {h }}$	

$a^{h}=a^{\log n / \log b}=n^{\log a / \log b}$

Evaluating: $T(n)=a T(n / b)+f(n)$

Level	\# Instances	Instance size	Work in stack frame	\# stack frames	Work in Level
0		n	$f(n)$	1	?
1		n/b	$f(n / b)$	a	
2		n / b^{2}	$f\left(n / b^{2}\right)$	a^{2}	
i		n / b^{i}	$f\left(n / b^{i}\right)$	a^{i}	
	0000000000000000				
$h=\log n / \log b$		n / b^{h}	T(1)		
$n^{\log a / \log b}$					

Evaluating: $T(n)=a T(n / b)+f(n)$

Level	\# Instances	Instance size	Work in stack frame	\# stack frames	Work in Level
0		n	$f(\mathrm{n})$	1	$1 \cdot f(n)$
1	----	n/b	$f(n / b)$	a	$a \cdot f(n / b)$
2		n / b^{2}	$f\left(n / b^{2}\right)$	a^{2}	$a^{2} \cdot f\left(n / b^{2}\right)$
i		n / b^{i}	$f\left(n / b^{i}\right)$	a^{i}	$a^{i} \cdot f\left(n / b^{i}\right)$
	0000000000000000				
$h=\log n / \log b$		n / b^{h}	T(1)		
...............................				$n^{\log a / \log b}$	$\mathbf{n}^{\log a / \log b} \cdot \mathbf{T}(1$

Total Work $T(n)=\sum_{98}=0 . . h^{\mathbf{a}^{i} \cdot f\left(n / b^{i}\right)}$

Evaluating: $T(n)=a T(n / b)+f(n)$

$$
=\sum_{i=0 . . \mathrm{h}} \mathbf{a}^{\mathrm{i} \cdot f\left(\mathrm{f} / \mathrm{b}^{\mathrm{i}}\right)}
$$

Evaluating: $T(n)=a T(n / b)+f(n)$

End of Lecture 7

Master Theorem: Intuition

Suppose $T(n)=a T(n / b)+f(n), a \geq 1, b>1$

Work at top level $=f(n)$
Work at bottom level $=$ number of base cases $=n^{\log _{b} a}=n^{\log a / \log b}$

Running time $=\max ($ work at top, work at bottom $)=\max \left(f(n), n^{\log _{b} a}\right)$

If they are equal, then all levels are important:
Running time $=$ sum of work over all levels $=n^{\log _{b} a} \log n$

Theorem 4.1 (Master Theorem)

Suppose $T(n)=a T(n / b)+f(n), a \geq 1, b>1$

1. IF $\exists \varepsilon>0$ such that $f(n) \in O\left(n^{\log _{b} a-\varepsilon}\right)$ THEN $T(n) \in \theta\left(n^{\log _{b} a}\right)$

2. IF $f(n) \in \theta\left(n^{\log _{b} a}\right)$ THEN $T(n) \in \theta\left(n^{\log _{b} a} \log n\right)$
«Work at each level is comparable: Sum work over all levels
3. IF $\exists \varepsilon>0$ such that $f(n) \in \Omega\left(n^{\log _{b} a+\varepsilon}\right) \longleftarrow$ Dominated by top level work AND
$\exists c<1, n_{0}>0$ such that $a f(n / b) \leq c f(n) \forall n \geq n_{0}$
THEN $T(n) \in \theta(f(n))$
Additional regularity condition

Theorem 4.1 (Master Theorem)

Suppose $T(n)=a T(n / b)+f(n), a \geq 1, b>1$

$$
\text { e.g., } T(n)=4 T(n / 2)+f(n) \rightarrow \log _{b} a=\log _{2} 4=2
$$

1. IF $\exists \varepsilon>0$ such that $f(n) \in O\left(n^{\log _{b} a-\varepsilon}\right)$
$f(n)=n^{2} ?$
THEN $T(n) \in \theta\left(n^{\log _{b} a}\right)$

$$
\text { e.g., } \varepsilon=0.01
$$

2. IF $f(n) \in \theta\left(n^{\log _{b} a}\right)$

THEN $T(n) \in \theta\left(n^{\log _{b} a} \log n\right)$
3. IF $\exists \varepsilon>0$ such that $f(n) \in \Omega\left(n^{\log _{b} a+\varepsilon}\right)$

AND
$\exists c<1, n_{0}>0$ such that $a f(n / b) \leq c f(n) \forall n \geq n_{0}$
THEN $T(n) \in \theta(f(n))$

Example 2: $T(n)=4 T(n / 2)+2^{n}$

$\left.\begin{array}{l}a=4 \\ b=2\end{array}\right\} n^{\log _{b} a}=n^{2}$
$f(n)=2^{n}$
Thus $f(n) \in \Omega\left(n^{\log _{b} a+\varepsilon}\right)$ (Case 3: dominated by top level)

Theorem 4.1 (Master Theorem)

Suppose $T(n)=a T(n / b)+f(n), a \geq 1, b>1$

1. IF $\exists \varepsilon>0$ such that $f(n) \in O\left(n^{\log _{b} a-\varepsilon}\right)$

THEN $T(n) \in \theta\left(n^{\log _{b} a}\right)$
2. IF $f(n) \in \theta\left(n^{\log _{b} a}\right)$

THEN $T(n) \in \theta\left(n^{\log _{b} a} \log n\right)$

$$
\left.\begin{array}{l}
a=4 \\
b=2
\end{array}\right\} n^{\log _{b} a}=n^{2}
$$

$$
f(n)=2^{n}
$$

3. IF $\exists \varepsilon>0$ such thát $f(n) \in \Omega\left(n^{\log _{b} a+\varepsilon}\right) \longleftarrow$ Dominated by top level work

AND
c. $\exists c<1, n_{0}>0$ such that $a f(n / b) \leq c f(n) \forall n \geq \bar{n}_{0}{ }^{-}$ン But what about this? THEN $\bar{T}(\bar{n}) \bar{\in} \bar{\theta}(f(n))$

Example 2: $T(n)=4 T(n / 2)+2^{n}$
$\left.\begin{array}{l}a=4 \\ b=2\end{array}\right\} n^{\log _{b} a}=n^{2}$
$f(n)=2^{n}$
Thus $f(n) \in \Omega\left(n^{\log _{b} a+\varepsilon}\right)$ (Case 3: dominated by top level)
Additional regularity condition:
$\exists c<1, n_{0}>0$ such that $a f(n / b) \leq c f(n) \forall n \geq n_{0}$
Thus we require that $4 \cdot 2^{n / 2} \leq c 2^{n}$
$\leftrightarrow c \geq 4 \cdot 2^{-n / 2}$
Let $n_{0}=6 \rightarrow c \geq \frac{1}{2}$
\rightarrow regularity condition holds for $n_{0}=6, c=0.5$
Thus $T(n)=\theta(f(n))=\theta\left(2^{n}\right)$

Example 3: $T(n)=4 T(n / 2)+n \log _{5} n$
$\left.\begin{array}{l}a=4 \\ b=2\end{array}\right\} \quad n^{\log _{b} a}=n^{2}$
$f(n)=n \log _{5} n$
Thus $f(n) \in O\left(n^{\log _{b} a-\varepsilon}\right)$ (Case 1: dominated by base cases)
Thus $T(n)=\theta\left(n^{\log _{b} a}\right)=\theta\left(n^{2}\right)$

Theorem 4.1 (Master Theorem)

Suppose $T(n)=a T(n / b)+f(n), a \geq 1, b>1$

$$
\left.\begin{array}{l}
a=4 \\
b=2
\end{array}\right\} n^{\log _{b} a}=n^{2}
$$

1. IF $\exists \varepsilon>0$ such that f

$$
f(n)=n \log _{5} n
$$

2. IF $f(n) \in \theta\left(n^{\log _{b} \bar{a}}\right)$

THEN $T(n) \in \theta\left(n^{\log _{b} a} \log n\right)$
3. IF $\exists \varepsilon>0$ such that $f(n) \in \Omega\left(n^{\log _{b} a+\varepsilon}\right)$

AND
$\exists c<1, n_{0}>0$ such that $a f(n / b) \leq c f(n) \forall n \geq n_{0}$
THEN $T(n) \in \theta(f(n))$

Example 4: $T(n)=4 T(n / 2)+n^{2}$
$\left.\begin{array}{l}a=4 \\ b=2\end{array}\right\} n^{\log _{b} a}=n^{2}$
$f(n)=n^{2}$
Thus $f(n) \in \theta\left(n^{\log _{b} a}\right)$ (Case 2: all levels significant)
Thus $T(n)=\theta\left(n^{\log _{b} a} \log n\right)=\theta\left(n^{2} \log n\right)$

Theorem 4.1 (Master Theorem)

Suppose $T(n)=a T(n / b)+f(n), a \geq 1, b>1$

1. IF $\exists \varepsilon>0$ such that $f(n) \in O\left(n^{\log _{b} a-\varepsilon}\right)$

THEN $T(n) \in \theta\left(n^{\log _{b} a}\right)$
$\left.\begin{array}{l}a=4 \\ b=2\end{array}\right\} \quad n^{\log _{b} a}=n^{2}$
$f(n)=n^{2}$
2. IF $f(n) \in \theta\left(n^{\log _{b} a}\right)$ Work at each level is comparable:

THEN $T(n) \in \theta\left(n^{\log _{b} a} \log n\right)$
Sum work over all levels
3. IF $\exists \varepsilon>0$ such that $f(n) \in \Omega\left(n^{\log _{b} a+\varepsilon}\right)$

AND
$\exists c<1, n_{0}>0$ such that $a f(n / b) \leq c f(n) \forall n \geq n_{0}$
THEN $T(n) \in \theta(f(n))$

Master Theorem Case 3: When the Regularity Condition Fails

e.g. $T(n)=T(n / 2)+n(1-.8 \cos \pi n)$

Here $\log _{b} a=\log _{2} 1=0 \rightarrow n^{\log _{b} a}=n^{0}=1$
and $f(n)=n(1-.8 \cos \pi n) \geq .2 n \in \Omega(n)$
Thus $f(n) \in \Omega\left(n^{\log _{b} a+\varepsilon}\right)$, suggesting that Case 3 applies.
But does the regularity condition hold?

Master Theorem Case 3: When the Regularity Condition Fails
e.g. $T(n)=T(n / 2)+n(1-.8 \cos \pi n) \quad$ Does the regularity condition hold?

We require that $a f(n / b) \leq c f(n)$ for some constant $c<1, \forall n \geq n_{0}$.
$\leftrightarrow f(n / 2) \leq c f(n)$
$\leftrightarrow(n / 2)(1-.8 \cos (\pi n / 2)) \leq c n(1-.8 \cos \pi n)$
$\leftrightarrow(1 / 2)(1-.8 \cos (\pi n / 2)) \leq c(1-.8 \cos \pi n)$
Given arbitrary n_{0}, select an $n \geq n_{0}$
such that n is even and $n / 2$ is odd
Then we require that $(1 / 2)(1+.8) \leq c(1-.8)$

$$
\leftrightarrow .9 \leq .2 c \leftrightarrow c \geq 4.5
$$

Thus the regularity condition does not hold.

Master Theorem Case 3: When the Regularity Condition Fails
So what is the solution?
$T(n)=T(n / 2)+n(1-.8 \cos \pi n)$
Note that $f(n)=n(1-.8 \cos \pi n) \in \Theta(n)$
So in this case,
$T(n) \in \Theta(f(n))=\Theta(n)$, despite failure of the reg. condition.
Question: Are there failures of the reg. condition that result in $T(n) \notin \Theta(f(n))$?

Master Theorem Case 3: When the Regularity Condition Fails

Question: Are there failures of the reg. condition that result in $T(n) \notin \Theta(f(n))$?

Consider $T(n)=2 T(n / 2)+f(n)$
where $f(n)=\left\{\begin{array}{l}n^{3} \text { when }\left\lceil\log _{2} n\right\rceil \text { is even } \\ n^{2} \text { when }\left\lceil\log _{2} n\right\rceil \text { is odd }\end{array}\right.$

Think about this puzzle and ask yourself:

1. Is the first condition of Case 3 satisfied?
2. Is the second (regularity) condition of Case 3 satisfied?
3. Is $T(n) \in \Theta(f(n))$?

Let's sleep on it.

Central Algorithmic Techniques

Recursion

Different Representations of Recursive Algorithms

Views

Code

Stack of Stack Frames
Tree of Stack Frames

Friends \& Strong Induction

Pros

- Implement on Computer
- Run on Computer
- View entire computation
- Worry about one step at a time.

Code

Representation of an Algorithm

$\operatorname{MULT}(X, Y):$
If $|X|=|Y|=1$ then RETURN $X Y$
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$
Pros and Cons?

Code Representation of an Algorithm

Pros:

- Runs on computers
- Precise and succinct

Cons:

- I am not a computer
- I need a higher level of intuition.
- Prone to bugs
- Language dependent

Different Representations of Recursive Algorithms

Views

Code

Stack of Stack Frames
Tree of Stack Frames

Friends \& Strong Induction

Pros

- Implement on Computer
- Run on Computer
- View entire computation
- Worry about one step at a time.

Stack of Stack Frames

$\operatorname{MULT}(X, Y):$
If $|X|=|Y|=1$ then RETURN XY
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$

```
X=2133
Y=2312
ac}
bd=
(a+b)(c+d)=
XY =
```

Stack Frame: A particular execution of one routine on one particular input instance.

Stack of Stack Frames

$\operatorname{MULT}(X, Y):$

If $\|X\|=\|Y\|=1$ then RETURN XY	
Break X into $a ; b$ and Y into $c ; d$	$X=2133$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$	$Y=2312$
RETURN	$a c=?$
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$	bd $=$ $(a+b)(c+d)=$ $X Y=$

Stack of Stack Frames

$\operatorname{MULT}(X, Y):$
If $|X|=|Y|=1$ then RETURN XY
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$

$\mathrm{X}=2133$
$\mathrm{Y}=2312$
$\mathrm{ac}=?$
$\mathrm{bd}=$
$(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=$
$\mathrm{XY}=$
$\mathrm{X}=21$
$\mathrm{Y}=23$
$\mathrm{ac}=$
$\mathrm{bd}=$
$(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=$
$\mathrm{XY}=$

Stack of Stack Frames

$\operatorname{MULT}(X, Y):$
If $|X|=|Y|=1$ then RETURN $X Y$
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$

$\mathrm{X}=2133$
$\mathrm{Y}=2312$
$\mathrm{ac}=?$
$\mathrm{bd}=$
$(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=$
$\mathrm{XY}=$
$\mathrm{X}=21$
$\mathrm{Y}=23$
$\mathrm{ac}=?$
$\mathrm{bd}=$
$(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=$
$\mathrm{XY}=$

Stack of Stack Frames

$\operatorname{MULT}(X, Y):$
If $|X|=|Y|=1$ then RETURN XY
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$

$\mathrm{X}=2133$
$\mathrm{Y}=2312$
$\mathrm{ac}=?$
$\mathrm{bd}=$
$(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=$
$\mathrm{XY}=$
$\mathrm{X}=21$
$\mathrm{Y}=23$
$\mathrm{ac}=?$
$\mathrm{bd}=$
$(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=$
$\mathrm{XY}=$
$\mathrm{X}=2$
$Y=2$
$X Y=$

Stack of Stack Frames

$\operatorname{MULT}(X, Y):$
If $|X|=|Y|=1$ then RETURN XY
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$

$\mathrm{X}=2133$
$\mathrm{Y}=2312$
$\mathrm{ac}=?$
$\mathrm{bd}=$
$(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=$
$\mathrm{XY}=$
$\mathrm{X}=21$
$\mathrm{Y}=23$
$\mathrm{ac}=?$
$\mathrm{bd}=$
$(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=$
$\mathrm{XY}=$
$\mathrm{X}=2$
$Y=2$
$X Y=4$

Stack of Stack Frames

$\operatorname{MULT}(X, Y):$
If $|X|=|Y|=1$ then RETURN XY
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$

$\mathrm{X}=2133$
$\mathrm{Y}=2312$
$\mathrm{ac}=?$
$\mathrm{bd}=$
$(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=$
$\mathrm{XY}=$
$\mathrm{X}=21$
$\mathrm{Y}=23$
$\mathrm{ac}=4$
$\mathrm{bd}=$
$(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=$
$\mathrm{XY}=$

Stack of Stack Frames

$\operatorname{MULT}(X, Y):$
If $|X|=|Y|=1$ then RETURN XY
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$

$\mathrm{X}=2133$
$\mathrm{Y}=2312$
$\mathrm{ac}=?$
$\mathrm{bd}=$
$(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=$
$\mathrm{XY}=$
$\mathrm{X}=21$
$\mathrm{Y}=23$
$\mathrm{ac}=4$
$\mathrm{bd}=?$
$(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=$
$\mathrm{XY}=$

Stack of Stack Frames

$\operatorname{MULT}(X, Y):$
If $|X|=|Y|=1$ then RETURN XY
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$

$\mathrm{X}=2133$
$\mathrm{Y}=2312$
$\mathrm{ac}=?$
$\mathrm{bd}=$
$(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=$
$\mathrm{XY}=$
$\mathrm{X}=21$
$\mathrm{Y}=23$
$\mathrm{ac}=4$
$\mathrm{bd}=?$
$(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=$
$\mathrm{XY}=$
$\mathrm{X}=1$
$Y=3$
$X Y=3$

Stack of Stack Frames

$\operatorname{MULT}(X, Y):$
If $|X|=|Y|=1$ then RETURN XY
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$

$\mathrm{X}=2133$
$\mathrm{Y}=2312$
$\mathrm{ac}=?$
$\mathrm{bd}=$
$(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=$
$\mathrm{XY}=$
$\mathrm{X}=21$
$\mathrm{Y}=23$
$\mathrm{ac}=4$
$\mathrm{bd}=3$
$(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=$
$\mathrm{XY}=$

Stack of Stack Frames

$\operatorname{MULT}(X, Y):$
If $|X|=|Y|=1$ then RETURN XY
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$

$\mathrm{X}=2133$
$\mathrm{Y}=2312$
$\mathrm{ac}=?$
$\mathrm{bd}=$
$(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=$
$\mathrm{XY}=$
$\mathrm{X}=21$
$\mathrm{Y}=23$
$\mathrm{ac}=4$
$\mathrm{bd}=3$
$(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=?$
$\mathrm{XY}=$

Stack of Stack Frames

$\operatorname{MULT}(X, Y):$
If $|X|=|Y|=1$ then RETURN XY
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$

$\mathrm{X}=2133$
$\mathrm{Y}=2312$
$\mathrm{ac}=?$
$\mathrm{bd}=$
$(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=$
$\mathrm{XY}=$
$\mathrm{X}=21$
$\mathrm{Y}=23$
$\mathrm{ac}=4$
$\mathrm{bd}=3$
$(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=?$
$\mathrm{XY}=$
$\mathrm{X}=3$
$Y=5$
$\mathrm{XY}=15$

Stack of Stack Frames

$\operatorname{MULT}(X, Y):$
If $|X|=|Y|=1$ then RETURN XY
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$

$\mathrm{X}=2133$
$\mathrm{Y}=2312$
$\mathrm{ac}=?$
$\mathrm{bd}=$
$(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=$
$\mathrm{XY}=$
$\mathrm{X}=21$
$\mathrm{Y}=23$
$\mathrm{ac}=4$
$\mathrm{bd}=3$
$(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=15$
$\mathrm{XY}=?$

Stack of Stack Frames

$\operatorname{MULT}(X, Y):$
If $|X|=|Y|=1$ then RETURN XY
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$

$\mathrm{X}=2133$
$\mathrm{Y}=2312$
$\mathrm{ac}=?$
$\mathrm{bd}=$
$(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=$
$\mathrm{XY}=$
$\mathrm{X}=21$
$\mathrm{Y}=23$
$\mathrm{ac}=4$
$\mathrm{bd}=3$
$(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=15$
$\mathrm{XY}=483$

Stack of Stack Frames

$\operatorname{MULT}(X, Y):$
If $|X|=|Y|=1$ then RETURN XY
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$

```
X=2133
Y=2312
ac =483
bd =
(a+b)(c+d)=
XY=
```


Stack of Stack Frames

$\operatorname{MULT}(X, Y):$

If $\|X\|=\|Y\|=1$ then RETURN XY	
Break X into $a ; b$ and Y into $c ; d$	$X=2133$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$	$Y=2312$
ac $=483$	
RETURN	$b d=?$
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$	$(a+b)(c+d)=$
	$X Y=$

Stack of Stack Frames

$\operatorname{MULT}(X, Y):$
If $|X|=|Y|=1$ then RETURN $X Y$
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$

```
X=2133
Y=2312
ac}=48
bd=?
(a+b)(c+d)=
XY=
X=33
Y=12
ac=?
bd=
(a+b)(c+d)=
XY= 15
```


Stack of Stack Frames

$\operatorname{MULT}(X, Y):$
If $|X|=|Y|=1$ then RETURN XY
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$

$X=2133$
$Y=2312$
$a c=483$
$b d=?$
$(a+b)(c+d)=$
$X Y=$
$X=33$
$Y=12$
$a c=?$
$b d=$
$(a+b)(c+d)=$
$X Y=15$
$X=3$
$Y=1$
$X Y=3$

Stack of Stack Frames

$\operatorname{MULT}(X, Y):$
If $|X|=|Y|=1$ then RETURN $X Y$
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$

```
X=2133
Y=2312
ac}=48
bd=?
(a+b)(c+d)=
XY=
X=33
Y=12
ac}=
bd=?
(a+b)(c+d)=
XY= 15
```


Stack of Stack Frames

$\operatorname{MULT}(X, Y):$
If $|X|=|Y|=1$ then RETURN XY
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$

$X=2133$
$Y=2312$
$a c=483$
$b d=?$
$(a+b)(c+d)=$
$X Y=$
$X=33$
$Y=12$
$a c=3$
$b d=?$
$(a+b)(c+d)=$
$X Y=15$
$X=3$
$Y=2$
$X Y=6$

Stack of Stack Frames

$\operatorname{MULT}(X, Y):$
If $|X|=|Y|=1$ then RETURN $X Y$
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$
$\mathrm{X}=2133$
$\mathrm{Y}=2312$
$\mathrm{ac}=483$
$\mathrm{bd}=?$
$(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=$
$\mathrm{XY}=$
$\mathrm{X}=33$
$\mathrm{Y}=12$
$\mathrm{ac}=3$
$\mathrm{bd}=6$
$(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=?$
$\mathrm{XY}=15$

Stack of Stack Frames

$\operatorname{MULT}(X, Y):$
If $|X|=|Y|=1$ then RETURN XY
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$

$\mathrm{X}=2133$
$\mathrm{Y}=2312$
$\mathrm{ac}=483$
$\mathrm{bd}=?$
$(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=$
$\mathrm{XY}=$
$\mathrm{X}=33$
$\mathrm{Y}=12$
$\mathrm{ac}=3$
$\mathrm{bd}=6$
$(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=?$
$\mathrm{XY}=396$

An so on

Stack of Stack Frames Representation of an Algorithm

Pros:

- Traces what actually occurs in the computer
- Concrete.

Cons:

- Described in words it is impossible to follow
- Does not explain why it works.
- Demonstrates for only one of many inputs.

Different Representations of Recursive Algorithms

Views

Code

Stack of Stack Frames
Tree of Stack Frames

Friends \& Strong Induction

Pros

- Implement on Computer
- Run on Computer
- View entire computation
- Worry about one step at a time.

Tree of Stack Frames

$\operatorname{MULT}(X, Y):$
If $|X|=|Y|=1$ then RETURN XY
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$

$$
\begin{aligned}
& X=2133 \\
& Y=2312 \\
& a c=483 \\
& b d=396 \\
& (a+b)(c+d)=1890 \\
& X Y=4931496
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{X}=21 \\
& \mathrm{Y}=23 \\
& \mathrm{ac}=4 \\
& \mathrm{bd}=3 \\
& (\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=15 \\
& \mathrm{XY}=483
\end{aligned}
$$

$$
\begin{array}{l|l}
\mathrm{X}=2 \\
\mathrm{Y}=2 \\
\mathrm{XY}=4 & \begin{array}{l}
\mathrm{X}=1 \\
\mathrm{Y}=3 \\
\mathrm{XY}=3
\end{array} \\
\hline
\end{array}
$$

Stack of Stack Frames Representation of an Algorithm

Pros:

Cons:

- View the entire computation. - Must describe entire tree.
- Good for computing the running time.
- For each stack frame
- input instance
- computation
- solution returned

Different Representations of Recursive Algorithms

Views

Code

Stack of Stack Frames
Tree of Stack Frames

Friends \& Strong Induction

Pros

- Implement on Computer
- Run on Computer
- View entire computation
- Worry about one step at a time.
$\operatorname{MULT}(X, Y):$

Friends \& Strong Induction

If $|X|=|Y|=1$ then RETURN XY
Break X into $a ; b$ and Y into $c ; d$ $e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$ RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$

$\mathrm{X}=21$
$\mathrm{Y}=23$

$$
\mathrm{ac}=4
$$

$$
\mathrm{bd}=3
$$

$(a+b)(c+d)=15$
$X Y=483$

One Friend for each stack frame.
Each worries only about his job.

$\operatorname{MULT}(X, Y)$:

Friends \& Strong Induction

If $|X|=|Y|=1$ then RETURN XY
Break X into $a ; b$ and Y into $c ; d$ $e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$ RETURN $e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$
$\mathrm{X}=2133$
$\mathrm{Y}=2312$
$\mathrm{ac}=483$
$\mathrm{bd}=396$
$(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=1890$
$2^{X Y=4931496}$

Worry about one step at a time.
Imagine that you are one specific friend.

Friends \& Strong Induction

$\operatorname{MULT}(X, Y)$:
-Consider your input instance
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$

Friends \& Strong Induction

$\operatorname{MULT}(X, Y):$
If $|X|=|Y|=1$ then RETURN XY
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$
-Consider your input instance
-Allocate work
-Construct one or more subinstances

Friends \& Strong Induction

MULT(X,Y):
If $|X|=|Y|=1$ then RETURN XY
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$

-Consider your input instance
-Allocate work
-Construct one or more subinstances
-Assume by magic your friends give you the answer for these.

Friends \& Strong Induction

$\operatorname{MULT}(X, Y)$:
If $|X|=|Y|=1$ then RETURN XY
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$

-Consider your input instance
-Allocate work
-Construct one or more subinstances
-Assume by magic your friends give you the answer for these.

- Use this help to solve your own instance.

Friends \& Strong Induction

$\operatorname{MULT}(X, Y)$:
If $|X|=|Y|=1$ then RETURN XY
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$

-Consider your input instance
-Allocate work
-Construct one or more subinstances
-Assume by magic your friends give you the answer for these.

- Use this help to solve your own instance.
-Do not worry about anything else, e.g.,
-Who your boss is.
- How your friends solve their instance.

MULT(X,Y):

Friends \& Strong Induction

If $|X|=|Y|=1$ then RETURN XY
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$

This technique is often referred to as
Divide and Conquer

$\operatorname{MULT}(X, Y)$:
If $|X|=|Y|=1$ then RETURN XY
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$

Consider generic instances.

$\operatorname{MULT}(X, Y):$

Friends \& Strong Induction

If $|X|=|Y|=1$ then RETURN XY Break X into $a ; b$ and Y into $c ; d$ $e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$ RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}$

This solves the problem for every possible instance.

$$
\begin{gathered}
\mathrm{X}=2133 \\
\mathrm{Y}=2312 \\
\mathrm{ac}=483 \\
\mathrm{bd}=396
\end{gathered}
$$

$$
(a+b)(c+d)=1890
$$

$$
R^{X Y=4931496}
$$

$$
\begin{aligned}
& \mathrm{X}=21 \\
& \mathrm{Y}=23 \\
& \mathrm{ac}=4 \\
& \mathrm{bd}=3
\end{aligned}
$$

$(a+b)(c+d)=15$
$X Y=483$

Friends \& Strong Induction

Recursive Algorithm:

- Assume you have an algorithm that works. - Use it to write an algorithm that works.

Friends \& Strong Induction

Recursive Algorithm:

- Assume you have an algorithm that works.
-Use it to write an algorithm that works.

If I could get in,
I could get the key.
Then I could unlock the door so that I can get in.

Circular Argument!

Friends \& Strong Induction

Recursive Algorithm:

- Assume you have an algorithm that works.
-Use it to write an algorithm that works.

Friends \& Strong Induction

MULT(X,Y):
If $|X|=|Y|=1$ then RETURN XY
Break X into $a ; b$ and Y into c; d
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$

- Allocate work
-Construct one or more subinstances

Each subinstance must be a smaller instance to the same problem.

Friends \& Strong Induction

Recursive Algorithm:

- Assume you have an algorithm that works.
-Use it to write an algorithm that works.

Friends \& Strong Induction

$\operatorname{MULT}(X, Y):$
If $|X|=|Y|=1$ then RETURN XY
Break X into $a ; b$ and Y into $c ; d$
$e=\operatorname{MULT}(a, c)$ and $f=\operatorname{MULT}(b, d)$
RETURN
$e 10^{n}+(\operatorname{MULT}(a+b, c+d)-e-f) 10^{n / 2}+f$

Use brute force to solve the base case instances.

Friends \& Strong Induction

Carefully write the specifications for the problem.
Preconditions:
Set of legal instances
Why? (inputs)

Postconditions: Required output

Friends \& Strong Induction

Carefully write the specifications for the problem.
Preconditions:

Set of legal instances (inputs)
-To be sure that we solve the problem for every legal instance.
-So that we know
-what we can give to a friend.
-So that we know
-what is expected of us.
-what we can expect from
our friend.

Related to Loop Invariants

Applications of Recursion

Another Numerical Computation Example

The Greatest Common Divisor (GCD) Problem

- Given two integers, what is their greatest common divisor?
- e.g., $\operatorname{gcd}(56,24)=8$

Notation:
Given $d, a \in \phi$:
$d \mid a \leftrightarrow d$ divides $a \leftrightarrow \exists k \in \phi: a=k d$
Note: All integers divide 0: $d \mid O \forall d \in \varnothing$

Important Property:
$d \mid a$ and $d|b \rightarrow d|(a x+b y) \forall x, y \in \phi$

Euclid's Trick

Important Property:
$d \mid a$ and $d|b \rightarrow d|(a x+b y) \forall x, y \in \phi$
Idea: Use this property to make the GCD problem easier!
Consequence:
e.g.,
$\operatorname{gcd}(a, b)=\operatorname{gcd}(a-b, b) \longrightarrow \operatorname{gcd}(56,24)=\operatorname{gcd}(56-24,24)=\operatorname{gcd}(32,24)$
$\operatorname{gcd}(a, b)=\operatorname{gcd}(a-2 b, b) \longrightarrow \operatorname{gcd}(56,24)=\operatorname{gcd}(56-2 \times 24,24)=\operatorname{gcd}(8,24) \quad$ Better!
$\operatorname{gcd}(a, b)=\operatorname{gcd}(a-3 b, b) \longrightarrow \operatorname{gcd}(56,24)=\operatorname{gcd}(56-3 \times 24,24)=\operatorname{gcd}(-16,24) \quad$ Too Far!

I

What is the optimal choice?
$\operatorname{gcd}(a, b)=\operatorname{gcd}(a \bmod b, b) \rightarrow \operatorname{gcd}(56,24)=\operatorname{gcd}(56 \bmod 24,24)=\operatorname{gcd}(8,24)$

Euclid's Algorithm (circa 300 BC)

Euclid(a,b)

<Precondition: a and b are positive integers>
<Postcondition: returns $\operatorname{gcd}(a, b)$ >
if $b=0$ then
return(a)
else return(Euclid(b,amod b))

Precondition met, since $\operatorname{amod} b \in \phi$
Postcondition met, since

1. $b=0 \rightarrow \operatorname{gcd}(a, b)=\operatorname{gcd}(a, 0)=a$
2. Otherwise, $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$
3. Algorithm halts, since $0 \leq a \bmod b<b$

End of Lecture 8

Time Complexity

Euclid(a,b)

if $b=0$ then
return(a)
else
return(Euclid(b,amod $b))$
Claim: 2nd argument drops by factor of at least 2 every 2 iterations.
Proof:

Iteration	$\operatorname{Arg} 1$	$\operatorname{Arg} 2$
i	a	b
$i+1$	b	$a \bmod b$
$i+2$	$\operatorname{amod} b$	$b \bmod (\operatorname{amod} b)$

Case 1: $a \bmod b \leq b / 2$. Then $b \bmod (a \bmod b)<a \bmod b \leq b / 2$
Case 2: $b>\operatorname{amod} b>b / 2$. Then $b \bmod (\operatorname{amod} b)<b / 2$

Time Complexity

Euclid(a,b)
if $b=0$ then
return(a)
else
return(Euclid(b,amod $b))$
Let $k=$ total number of recursive calls to Euclid.
Let $n=$ input size ; number of bits used to represent a and b.
Then $2^{k / 2} ; b ; 2^{n / 2} \rightarrow k ; n$.
Each stackframe must compute $a \bmod b$, which takes more than constant time.

It can be shown that the resulting time complexity is $T(n) \in O\left(n^{2}\right)$.

Applications of Recursion

Data Organization

A Simple Example:

The Tower of Hanoi

Tower of Hanoi

This job of mine is a bit daunting. Where do I start?

And I am lazy.

Tower of Hanoi

At some point, the biggest disk moves.
I will do that job.

Tower of Hanoi

To do this, the other disks
 must be in the middle.

Tower of Hanoi

How will these move?
I will get a friend to do it.
And another to move these.
I only move the big disk.

Tower of Hanoi

Code:
algorithm TowersOf Hanoi(n, source, destination, spare)
$\langle\boldsymbol{p r e}-\boldsymbol{c o n d}\rangle$: The n smallest disks are on pole $e_{\text {source }}$.
\langle post-cond \rangle : They are moved to pole destination .
begin

$$
\operatorname{if}(n=1)
$$

Move the single disk from pole source to pole destination . else

TowersOf Hanoi($n-1$, source, spare, destination)
Move the $n^{\text {th }}$ disk from pole source to pole destination .
TowersOf Hanoi($n-1$, spare, destination, source)
end if
end algorithm

Tower of Hanoi

```
Code:
algorithm TowersOfHanoi(n,source, destination, spare)
<\boldsymbol{re}-\boldsymbol{cond}\rangle: The n smallest disks are on pole source.
<post-cond\rangle: They are moved to pole destination.
begin
        if(n=1)
            Move the single disk from pole source to pole destination.
        else
            TowersOfHanoi(n-1, source, spare, destination)
            Move the n}\mp@subsup{}{}{\mathrm{ th }}\mathrm{ disk from pole source to pole destination.
            TowersOf Hanoi(n-1, spare, destination,source)
        end if
    end algorithm
```


Time:

$\mathrm{T}(1)=1$,

$$
\mathrm{T}(\mathrm{n})=1+2 \mathrm{~T}(\mathrm{n}-1) \approx 2 \mathrm{~T}(\mathrm{n}-1)
$$

$$
\approx 2(2 \mathrm{~T}(\mathrm{n}-2)) \quad \approx 4 \mathrm{~T}(\mathrm{n}-2)
$$

$$
\approx 4(2 \mathrm{~T}(\mathrm{n}-3)) \quad \approx 8 \mathrm{~T}(\mathrm{n}-3)
$$

$$
\approx 2^{\mathrm{i}} \mathrm{~T}(\mathrm{n}-\mathrm{i})
$$

$\approx 2^{\mathrm{n}}$

More Data Organization Examples

Sorting

Recursive Sorts

- Given list of objects to be sorted

- Split the list into two sublists.

- Recursively have a friend sort the two sublists.

- Combine the two sorted sublists into one entirely sorted list.

Example: Merge Sort

Merge Sort

Divide and Conquer

Merge Sort

Split Set into Two (no real work)

Get one friend to sort the first half.

Get one friend to
sort the second half.

Merge Sort

Merge two sorted lists into one

Merge Sort

Time: $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\Theta(\mathrm{n})$
 $$
=\Theta(\mathrm{n} \log (\mathrm{n}))
$$

Example: Quick Sort

Quick Sort

Divide and Conquer

Quick Sort

Partition set into two using randomly chosen pivot

Quick Sort

Get one friend to sort the first half.

Get one friend to sort the second half.

Quick Sort

Glue pieces together. (No real work)

$$
14,23,25,30,31,52,62,79,88,98
$$

Quick Sort

Quick Sort

If the list is already sorted, then the list is worst case unbalanced.

Best Time:

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =2 \mathrm{~T}(\mathrm{n} / 2)+\Theta(\mathrm{n}) \\
& =\Theta(\mathrm{n} \log (\mathrm{n}))
\end{aligned}
$$

Worst Time:

Expected Time:

Quick Sort

Best Time:

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =2 \mathrm{~T}(\mathrm{n} / 2)+\Theta(\mathrm{n}) \\
& =\Theta(\mathrm{n} \log (\mathrm{n}))
\end{aligned}
$$

Worst Time:

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =T(1)+\mathrm{T}(\mathrm{n}-1)+\Theta(\mathrm{n}) \\
& =\Theta\left(\mathrm{n}^{2}\right)
\end{aligned}
$$

Expected Time:

Quick Sort

Best Time:

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =2 \mathrm{~T}(\mathrm{n} / 2)+\Theta(\mathrm{n}) \\
& =\Theta(\mathrm{n} \log (\mathrm{n}))
\end{aligned}
$$

$$
\text { Worst Time: } \quad \begin{aligned}
\mathrm{T}(\mathrm{n}) & =T(0)+\mathrm{T}(\mathrm{n}-1)+\Theta(\mathrm{n}) \\
& =\Theta\left(\mathrm{n}^{2}\right)
\end{aligned}
$$

Expected Time: $T(n)=\Theta(n \log (n))$
(The proof is not difficult, but it's a little long)

Expected Time Complexity for Quick Sort

Q: Why is it reasonable to expect $\Theta(n \log n)$ time complexity?
A: Because on average, the partition is not too unbalanced.
Example: Imagine a deterministic partition, in which the 2 subsets are always in fixed proportion, i.e., $p(n-1) \& q(n-1)$, where p, q are constants, $p, q \in[0 \ldots 1], p+q=1$.

Expected Time Complexity for Quick Sort

Then $T(n)=T(p(n-1))+T(q(n-1))+\Theta(n)$
wlog, suppose that $q>p$.
Then recursion tree has depth $\mathrm{k} \in \Theta(\log n)$:
$q^{k} n=1 \rightarrow k=\log n / \log (1 / q)$
$\Theta(n)$ work done per level $\rightarrow T(n)=\Theta(n \log n)$.

Properties of QuickSort

- In-place?
- Stable?
- Fast?
- Depends.
- Worst Case: $\Theta\left(n^{2}\right)$
- Expected Case: $\Theta(n \log n)$, with small constants

Heaps, Heap Sort, \& Priority Queues

Heapsort

- O(nlogn) worst case - like merge sort
- Sorts in place - like insertion sort
- Combines the best of both algorithms

Heap Definition (MaxHeap)

- Balanced binary tree
- The value of each node \geq each of the node's children.
- Left or right child could be next largest.

Where can 9 go?
Maximum is at root.
Where can 1 go?
Where can 8 go?

Some Additional Properties of Heaps

The height $h(i)$ of a node i of the heap is the number of edges on the longest simple downard path from the node to a leaf.

The height H of a heap is the height of the root.

Some Additional Properties of Heaps

An n-element heap has height $H=\left\lfloor\log _{2} n\right\rfloor$

Some Additional Properties of Heaps

A heap of height H has at least $n=2^{H}$ nodes. A heap of height H has at most $n=2^{H+1}-1$ nodes.

$$
2^{H} \leq n \leq 2^{H+1}-1
$$

Heap Data Structure

Balanced Binary Tree Implemented by an Array

- The root is stored in $A[1]$
- The parent of $A[i]$ is $A\left[\left\lfloor\frac{i}{2}\right\rfloor\right]$.
- The left child of $A[i]$ is $A[2 \cdot i]$.
- The right child of $A[i]$ is $A[2 \cdot i+1]$.
- The node in the far right of the bottom level is stored in $A[n]$.
- If $2 i+1>n$, then the node does not have a right child.

Make Heap

algorithm MakeHeap()
\langle pre-cond : The input is an array of numbers, which can be viewed as a balanced binary tree of numbers.
\langle post-cond): Its values are rearranged in place to make it heap.
Get help from friends

Heapify

Max-Heapify (A, i, n)

<pre-cond>: Left and right subtrees of $\mathrm{A}[\mathrm{i}]$ are max heaps.
<post-cond>: Subtree rooted at i is a heap.

Where should the maximum be?

Heapify

Max-Heapify(A, i, n)

<pre-cond>: Left and right subtrees of $\mathrm{A}[\mathrm{i}]$ are max heaps.
<post-cond>: Subtree rooted at i is a heap.

Find the maximum.

(3) (2)

Put it in place

Heapify

Max-Heapify(A, i, n)

<pre-cond>: Left and right subtrees of $\mathrm{A}[\mathrm{i}]$ are max heaps.
<post-cond>: Subtree rooted at i is a heap.

Running Time: $T(n)=\Theta$ (the height of tree) $=\Theta(\log n)$.

$$
T(n)=1 \cdot T(n / 2)+\Theta(1)=\Theta(\log n) .
$$

Max-Heapify(A, i, n)

<pre-cond>: Left and right subtrees of $A[i]$ are max heaps.
<post-cond>: Subtree rooted at i is a heap.

$l \leftarrow \operatorname{LEFT}(i)$

$r \leftarrow$ RIGHT (i)
if $l \leq n$ and $A[l]>A[i]$
then largest $\leftarrow l$ else largest $\leftarrow i$
if $r \leq n$ and $A[r]>A[$ largest $]$
e.g., Max-Heapify $(\mathbf{A}, 2,10)$
\rightarrow Max-Heapify (A,4,10)
\rightarrow Max-Heapify $(A, 9,10)$
then largest $\leftarrow r$
if largest $\neq i$
then exchange $A[i] \leftrightarrow A[$ largest $]$
Max-HEAPIFY (A, largest, n)

213

End of Lecture 9

MakeHeap

- MakeHeap uses Max-Heapify to reorganize the tree from bottom to top to make it a heap.
- MakeHeap can be written concisely in either recursive or iterative form.

Recursive MakeHeap

MakeHeap (A, i, n)

Invoke as MakeHeap (A, 1, n)
<pre-cond>: $A[i \mathrm{~K} n]$ is a balanced binary tree
<post-cond>: The subtree rooted at i is a heap Running time:
if $i \leq\lfloor n / 4\rfloor$ then
MakeHeap (A,LEFT(i), n)
MakeHeap(A, RIGHT(i),n)
Max-Heapify (A, i, n)

216

Recursive MakeHeap

MakeHeap (A, i, n)

<pre-cond>: $A[i K n]$ is a balanced binary tree <post-cond>: The subtree rooted at i is a heap
if $i \leq\lfloor n / 4\rfloor$ then
MakeHeap (A,LEFT(i), n)
MakeHeap (A, RIGHT(i),n)
Max-Heapify (A, i, n)

217

Recursive MakeHeap

Iterative MakeHeap

MakeHeap(A,n)

<pre-cond>: $A[1 \mathrm{~K} n$] is a balanced binary tree
<post-cond: $A[1 \mathrm{~K} n$] is a heap
for $i \leftarrow\lfloor n / 2\rfloor$ downto 1
< LI >: All subtrees rooted at $i+1 \mathrm{~K} n$ are heaps
Max-Heapify(A,i,n)

Max-Heapify (A, i, n)
<pre-cond>: Left and right subtrees of $A[i]$ are max heaps.
<post-cond>: Subtree rooted at i is a heap.

Iterative MakeHeap

MakeHeap(A,n)

<pre-cond>: $A[1 \mathrm{~K} n$] is a balanced binary tree
<post-cond»: $A[1 \mathrm{~K} n$] is a heap
for $i \leftarrow\lfloor n / 2\rfloor$ downto 1
< LI >: All subtrees rooted at $i+1 \mathrm{~K} n$ are heaps
Max-Heapify(A,i,n)

Max-Heapify (A, i, n)
<pre-cond>: Left and right subtrees of $A[i]$ are max heaps.
<post-cond>: Subtree rooted at i is a heap.

Iterative MakeHeap

MakeHeap (A, n)

<pre-cond>: $A[1 \mathrm{~K} n]$ is a balanced binary tree
<post-cond»: $A[1 \mathrm{~K} n$] is a heap
for $i \leftarrow\lfloor n / 2\rfloor$ downto 1
< LI >: All subtrees rooted at $i+1 \mathrm{~K} n$ are heaps
Max-Heapify(A,i,n)

Max-Heapify (A, i, n)
<pre-cond>: Left and right subtrees of $A[i]$ are max heaps.
<post-cond>: Subtree rooted at i is a heap.

Iterative MakeHeap

MakeHeap(A,n)

<pre-cond>: $A[1 \mathrm{~K} n$] is a balanced binary tree
<post-cond»: $A[1 \mathrm{~K} n$] is a heap
for $i \leftarrow\lfloor n / 2\rfloor$ downto 1
< LI >: All subtrees rooted at $i+1 \mathrm{~K} n$ are heaps
Max-Heapify(A,i,n)

Max-Heapify(A, i, n)
<pre-cond>: Left and right subtrees of $A[i]$ are max heaps.
<post-cond>: Subtree rooted at i is a heap.

Iterative MakeHeap

MakeHeap (A, n)

<pre-cond>: $A[1 \mathrm{~K} n$] is a balanced binary tree
<post-cond»: $A[1 \mathrm{~K} n$] is a heap
for $i \leftarrow\lfloor n / 2\rfloor$ downto 1
< LI >: All subtrees rooted at $i+1 \mathrm{~K} n$ are heaps
Max-Heapify(A,i,n)

Max-Heapify(A, i, n)
<pre-cond>: Left and right subtrees of $A[i]$ are max heaps.
<post-cond>: Subtree rooted at i is a heap.

Iterative MakeHeap

MakeHeap (A, n)
<pre-cond>: $A[1 \mathrm{~K} n]$ is a balanced binary tree
<post-cond: $A[1 \mathrm{~K} n$] is a heap
for $i \leftarrow\lfloor n / 2\rfloor$ downto 1
< LI >: All subtrees rooted at $i+1 \mathrm{~K} n$ are heaps
Max-Heapify(A,i,n)
Runtime:
Height of heap $=\left\lfloor\log _{2} n\right\rfloor$
It can be shown that the number of nodes at height $h \leq\left\lceil\frac{n}{2^{h+1}}\right\rceil$
Time to heapify from node at height $h \in O(h)$
$\rightarrow T(n)=\sum_{n=0}^{\lfloor\log n\rfloor}\left[\frac{n}{2^{h+1}}\right] O(h)=O\left(n \sum_{n=0}^{\lfloor\log n\rfloor} \frac{h}{2^{h}}\right)=O(n)$

Iterative MakeHeap

- Recursive and Iterative MakeHeap do essentially the same thing: Heapify from bottom to top.
- Difference:
- Recursive is "depth-first"
- Iterative is "breadth-first"

Using Heaps for Sorting

Selection Sort

Largest i values are sorted on the right. Remaining values are off to the left.

Max is easier to find if a heap.

Heap Sort

HeapSort (A, n)
<pre-cond>:A[1...n] is a list of keys
<post-cond>:A[1...n] is sorted in non-decreasing order

Largest i values are sorted on side. Remaining values are in a heap.

Heap Data Structure

Heap Array

Heap Sort

Largest i values are sorted on side.
 Remaining values are in a heap

Put next value where it belongs.

Max-Heapify (A, i, n)

<pre-cond>: Left and right subtrees of $A[i]$ are max heaps.
<post-cond>: Subtree rooted at i is a heap.

Heap Sort

HeapSort(A, n)

Heap Sort

<pre-cond>:A[1...n] is a list of keys
<post-cond»:A[1...n] is sorted in non-decreasing order
MakeHeap (A,n)
for $i \leftarrow n$ downto 2
< LI >: $A[1 \mathrm{~K} i]$ is a heap
$A[i+1 \mathrm{~K} n]$ contains the largest keys in non-decreasing order
exchange $A[1] \leftrightarrow A[i]$
Max-Heapify $(A, 1, i-1)$
Running Time:
MakeHeap takes $\Theta(n)$ time.
Heapifing a tree of size i takes $\log (i)$.
$T(n)=\Theta(n)+\sum_{i=n}^{1} \log i . \quad$ This sum is arithmetic.
$T(n)=\mathrm{n} \times$ maximum value $=\Theta(n \log n)$.

Other Applications of Heaps

Priority Queue

- Maintains dynamic set, A , of n elements, each with a key.
- Max-priority queue supports:

> 1. MAXIMUM(A)
> 2. EXTRACT-MAX(A, n)
> 3. INCREASE-KEY(A, i, key)
> 4. INSERT(A, key, n)

- Example Application: Schedule jobs on a shared computer.

Priority Queues cont'd...

- MAXIMUM(A): HEAP-MAXIMuM(A) return $A[1]$

Time: $\Theta(1)$.

- EXTRACT-MAX(A,n):

```
HEap-Extract-Max (A,n)
if n<1
    then error "heap underflow"
max}\leftarrowA[1
A[1]}\leftarrowA[n
Max-HEAPIFY (A, 1,n-1) }\triangleright\mathrm{ remakes heap
return max
```

Analysis: constant time assignments plus time for Max-HEAPIFy.
Time: $O(\lg n)$.

Priority Queue cont'd...

- INCREASE-KEY(A, i, key):

```
HEAp-Increase-Key(A,i,key)
if key & A[i]
    then error "new key is smaller than current key"
A[i]}\leftarrowke
while i> 1 and A[PARENT (i)] <A[i]
        do exchange }A[i]\leftrightarrowA[PARENT(i)
            i}\leftarrow\operatorname{PaRENT(i)
```

Analysis: Upward path from node i has length $O(\lg n)$ in an n-element heap.
Time: $O(\lg n)$.

$$
\text { MAX-HEAP-INSERT }(A, k e y, n)
$$

- INSERT(A, key, n): $\quad A[n+1] \leftarrow-\infty$

$$
\text { HEAP-INCREASE-KEY }(A, n+1, \text { key })
$$

Analysis: constant time assignments + time for Heap-Increase-Key.
Time: $O(\lg n)$.

Binary Search Trees

- Support many dynamic-set operations
- Basic operations take time proportional to height h of tree.
$\Theta(\log n)$ for balanced tree
$\Theta(n)$ for worst-cased unbalanced tree

Binary Search Tree

Left children \leq Node \leq Right children

BST Data Structure

Each node contains the fields

- key (and possibly other satellite data).
- left: points to left child.
- right: points to right child.
- p : points to parent. $p[\operatorname{root}[T]]=$ NIL.

Insertion

Tree-Insert (T, z)
<pre-cond>: T is a BST, z a node to be inserted
<post-cond>: T is a BST with z inserted
$y \leftarrow$ NIL
$x \leftarrow \operatorname{root}[T]$
while $x \neq$ NIL
do $y \leftarrow x$
if $k e y[z]<k e y[x]$
then $x \leftarrow$ left $[x]$
else $x \leftarrow \operatorname{right}[x]$
$p[z] \leftarrow y$
if $y=$ NIL
then $\operatorname{root}[T] \leftarrow z \quad \triangleright$ Tree T was empty
else if $k e y[z]<k e y[y]$
then left $[y] \leftarrow z$
else $\operatorname{right}[y] \leftarrow z$

Insertion

Building a Tree

Build-BST(Z)
<pre-cond»: Z is a set of nodes
<post-cond»: Returns a BST consisting of the nodes in Z
$T \leftarrow$ NIL
for z in Z
Tree-Insert (T, z)

Time for each insertion $=\Theta(h)$
For balanced tree, number of nodes inserted into tree of height h is 2^{h}
Thus $T(n)=\sum_{h=0}^{\left\lfloor\log _{2} n\right\rfloor} 2^{h} \Theta(h)=\Theta(n \log n)$

Searching the Tree

- PreConditions
- Key 25
- A binary search tree.

Searching the Tree

- Maintain a sub-tree.
- If the key is contained in the original tree, then the key is contained in the sub-tree.

Define Step

- Cut sub-tree in half.
- Determine which half the key would be in.
- Keep that half.

If key < root, If key = root, If key > root, then key is in left half. then key is found then key is in right half.

Searching the Tree

Tree-Search (x, k)
<pre-cond>: x is a BST, k is a key to search for
<post-cond>: returns the node matching k if it exists or NIL otherwise
if $x=$ NIL or $k=k e y[x]$
then return x
if $k<k e y[x]$
then return Tree-SEARCH (left $[x], k$)
else return TREE-SEARCH (right $[x], k)$
Runtime $=\Theta(h)$

Why use (balanced) binary search trees?

- What is the advantage over a sorted linear array?
- Search time is the same
- However, maintaining (inserting, deleting, modifying) is
- $\Theta(\operatorname{logn})$ for balanced BSTs
- $\Theta(n)$ for arrays

