
1

Graph Search Algorithms

2

Graph

a

c

b Node ~ city or computer

Edge ~ road or data cable

Undirected or Directed

A surprisingly large number of computational
problems can be expressed as graph problems.

3

Directed and Undirected Graphs

(c) The subgraph of the graph in part (a) induced by the vertex
set {1,2,3,6}.

(a)  A directed graph G = (V, E), where V = {1,2,3,4,5,6} and
 E = {(1,2), (2,2), (2,4), (2,5), (4,1), (4,5), (5,4), (6,3)}.
 The edge (2,2) is a self-loop.

(b) An undirected graph G = (V,E), where V = {1,2,3,4,5,6} and
 E = {(1,2), (1,5), (2,5), (3,6)}. The vertex 4 is isolated.

4

Trees

Tree Forest Graph with Cycle

A tree is a connected, acyclic, undirected graph.

A forest is a set of trees (not necessarily connected)

5

Running Time of Graph Algorithms

•  Running time often a function of both |V| and |E|.

•  For convenience, drop the | . | in asymptotic notation,
e.g. O(V+E).

6

Representations: Undirected Graphs

Adjacency List Adjacency Matrix

Space complexity:

Time to find all neighbours of vertex :u

Time to determine if (,) : ∈u v E

()θ +V E

(degree())θ u

(degree())θ u

2()θ V

()θ V

(1)θ

7

Representations: Directed Graphs

Adjacency List Adjacency Matrix

Space complexity:

Time to find all neighbours of vertex :u

Time to determine if (,) : ∈u v E

()θ +V E

(degree())θ u

(degree())θ u

2()θ V

()θ V

(1)θ

8

Breadth-First Search

•  Goal: To recover the shortest paths from a source node
s to all other reachable nodes v in a graph.
–  The length of each path and the paths themselves are returned.

•  Notes:
–  There are an exponential number of possible paths

–  This problem is harder for general graphs than trees because of
cycles!

s

?

9

Breadth-First Search

•  Idea: send out search ‘wave’ from s.

•  Keep track of progress by colouring vertices:
–  Undiscovered vertices are coloured black

–  Just discovered vertices (on the wavefront) are coloured red.

–  Previously discovered vertices (behind wavefront) are coloured grey.

Graph (,) (directed or undirected) and sourceInput: vertex .G V E s V= ∈

[] shortest path distance (,) from to , .
 [] such that (,) is las

Outpu

t edg

t:

e on shortest path from a to

 .
d v s v s v v V

v u u v s v
δ

π

= ∀ ∈

=

10

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

First-In First-Out (FIFO) queue
stores ‘just discovered’ vertices

11

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

s

d=0

d=0

12

BFS Found
Not Handled

Queue

d=0
a

b
g
d

d=1

s

a

c

h

k

f

i

l

m

j

e

b

g
d

d=0
d=1

13

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

a

b
g
d

d=0
d=1

d=1

14

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

b
g
d

c
f

d=0
d=1

d=2

d=1

d=2

15

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

b
g

c
f
m
e

d=0
d=1

d=2

d=1

d=2

16

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue
d=0

d=1

d=2

b

j

c
f
m
e

d=1

d=2

17

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue
d=0

d=1

d=2

j

c
f
m
e

d=1

d=2

18

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

c
f
m
e
j

d=0
d=1

d=2

d=2

19

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

f
m
e
j
h
i

d=0
d=1

d=2

d=3

d=2

d=3

20

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

m
e
j
h
i

d=0
d=1

d=2

d=3

d=2

d=3

21

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

e
j
h
i
l

d=0
d=1

d=2

d=3

d=2

d=3

22

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

j
h
i
l

d=0
d=1

d=2

d=3

d=2

d=3

23

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

h
i
l

d=0
d=1

d=2

d=3

d=2

d=3

24

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

h

d=0
d=1

d=2

d=3

i
l

d=3

25

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

i
l
k

d=0
d=1

d=2

d=3 d=4

d=3

d=4

26

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

l
k

d=0
d=1

d=2

d=3 d=4

d=3

d=4

27

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

k

d=0
d=1

d=2

d=3 d=4

d=3

d=4

28

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue

k

d=0
d=1

d=2

d=3 d=4

d=4

29

BFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Queue
d=0

d=1

d=2

d=3 d=4

d=4
d=5

30

Breadth-First Search Algorithm

•  Q is a FIFO queue.

•  Each vertex assigned finite d
value at most once.

•  Q contains vertices with d
values {i, …, i, i+1, …, i+1}

•  d values assigned are
monotonically increasing over
time.

BLACK

RED

BLACK
RED

GRAY

31

Breadth-First-Search is Greedy

•  Vertices are handled:
–  in order of their discovery (FIFO queue)

–  Smallest d values first

32

Basic Steps:

s
u

The shortest path to u
has length d

v

& there is an edge
from u to v

There is a path to v with length d+1.

Correctness

d

33

Correctness

•  Vertices are discovered in order of their distance from
the source vertex s.

•  When we discover v, how do we know there is not a
shorter path to v?
–  Because if there was, we would already have discovered it!

s
u v d

34

Correctness

Graph (,) (directed or undirected) and sourceInput: vertex .G V E s V= ∈

[] distance from to , .
 [] such that (,) is last edge on s

Output:

hortest path from to .
 d v s v v V

v u u v s vπ

= ∀ ∈

=

1. [] (,)d v s v v Vδ≥ ∀ ∈

2. [] (,) d v s v v Vδ> ∀ ∈/

Two-step proof:

On exit:

35

δ≥ ∀ ∈Claim 1. is never too small: [] (,)d d v s v v V
 There exists a path from to of length [].Proof: v vs d

By Induction:
Suppose it is true for all vertices thus far discovered (an grre d d ey).

 is discovered from some adjacent vertex being handled.uv

→ = +[] [] 1d v d u
δ≥ +(,) 1us
δ≥ (,)s v u v

s

since each vertex is assigned a value exactly once,
it follows that o []n exit, (.,)d v s v

v
v V
d

δ≥ ∀ ∈

36

: [] (,) 'disco rvered' (o gr)eyred d v s v v Vδ← ≥ ∀ ∈

(,) 1s uδ≥ + (,)s vδ≥

δ≥ ∀ ∈Claim 1. is never too small: [] (,)d d v s v v V

BLACK

RED

BLACK
RED

GRAY

 There exists a path from to of length [].Proof: v vs d

s
u v

37

δ≤ ∀ ∈Claim 2. is never too big: [] (,) d d v s v v V
Proof by contradiction:

δSuppose one or more vertices receive a value greater than .d

δLet be the vertex with minimum (,) that receives such a value.s dv v

Let be 's predecessor on a shortest path from to .u sv v

s
u v

Suppose that is discovered and assigned this d value when vertex is dequeued.v x

= −[] [] 1d x d v

δ= −[] (,) 1d s vu

δ <(,) []vs d v

 vertices are dequeued in increasing order of Reca v .ll: alued
→ u was dequeued before x.

δ→ = + =[] [] 1 (,)dvd u s v

x δ→ − < −(,) 1 [] 1v d vs

→ <[] []d u d x

Then

Contradiction!

38

Correctness

δ≥ ∀ ∈Claim 1. is never too small: [] (,)d d v s v v V

δ≤ ∀ ∈Claim 2. is never too big: [] (,) d d v s v v V

δ⇒ = ∀ ∈ is just right: [] (,) d d v s v v V

39

Progress?

•  On every iteration one vertex is processed (turns gray).

BLACK

RED

BLACK
RED

GRAY

40

Running Time

Each vertex is enqueued at most once ()O V→

Each entry in the adjacency lists is scanned at most once O(E)→

Thus run time is ().O V E+
BLACK

RED

RED

GRAY

BLACK

41

•  The shortest path problem has the optimal substructure property:
–  Every subpath of a shortest path is a shortest path.

•  The optimal substructure property
–  is a hallmark of both greedy and dynamic programming algorithms.

–  allows us to compute both shortest path distance and the shortest paths
themselves by storing only one d value and one predecessor value per
vertex.

Optimal Substructure Property

u v s

shortest path

shortest path shortest path

42

Recovering the Shortest Path
For each node v, store predecessor of v in π(v).

s
u v

Predecessor of v is

π(v)

π(v) = u.

43

Recovering the Shortest Path

Precondition: and are vertices of graph
Postcondition: the vertices on the shortest path from to have been prin

P

if then

RINT-PATH(, ,)

pr

print

ted in o

else

int
if

rd

then [] I
"

e

L

r

N

s v G
s v

s

v

v

s
s

G

v

π

=

=

else
no path from" "to" "exists"

PRINT-PATH(, , [])
print

s v

G s v
v

π

44

Colours are actually not required

45

Depth First Search (DFS)

•  Idea:
–  Continue searching “deeper” into the graph, until we get

stuck.

–  If all the edges leaving v have been explored we “backtrack”
to the vertex from which v was discovered.

•  Does not recover shortest paths, but can be useful for
extracting other properties of graph, e.g.,
–  Topological sorts

–  Detection of cycles
–  Extraction of strongly connected components

46

Depth-First Search

•  Explore every edge, starting from different vertices if necessary.

•  As soon as vertex discovered, explore from it.

•  Keep track of progress by colouring vertices:
–  Black: undiscovered vertices

–  Red: discovered, but not finished (still exploring from it)

–  Gray: finished (found everything reachable from it).

Graph (,) (directed or In undirectep :)t du G V E=

2 timestamps on each vertex:
 [] discovery time.
 [] finishing tim

Output

.

:

e
d v
f v

=

=
1 [] [] 2| |d v f v V≤ < ≤

47

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Stack
<node,# edges>

/

/

/ /

/

/

/

/

/

/

/

/

/

/

d f
Note: Stack is Last-In First-Out (LIFO)

48

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

Found
Not Handled

Stack
<node,# edges>

s,0

/

1/

/ /

/

/

/

/

/

/

/

/

/

/

49

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,0
/

1/

/ 2/

/

/

/

/

/

/

/

/

/

/

50

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,0 /

1/

/ 2/

3/

/

/

/

/

/

/

/

/

/

51

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,1
h,0

/

1/

/ 2/

3/

/

/

/

/

/

/

/

4/

/

52

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,1
h,1
k,0

/

1/

/ 2/

3/

/

/

/

/

/

/

5/

4/

/

53

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,1
h,1

Tree Edge

Path on Stack /

1/

/ 2/

3/

/

/

/

/

/

/

5/6

4/

/

54

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,1 /

1/

/ 2/

3/

/

/

/

/

/

/

5/6

4/7

/

55

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,0

8/

1/

/ 2/

3/

/

/

/

/

/

/

5/6

4/7

/

56

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,1

Cross Edge to handled node: d[h]<d[i]

8/

1/

/ 2/

3/

/

/

/

/

/

/

5/6

4/7

/

57

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,2

8/

1/

/ 2/

3/

/

/

/

/

/

/

5/6

4/7

/

58

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,3
l,0

8/

1/

/ 2/

3/

/

/

/

/

/

9/

5/6

4/7

/

59

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,3
l,1

8/

1/

/ 2/

3/

/

/

/

/

/

9/

5/6

4/7

/

60

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,3

8/

1/

/ 2/

3/

/

/

/

/

/

9/10

5/6

4/7

/

61

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,4
g,0

8/

1/

/ 2/

3/

/

/

11/

/

/

9/10

5/6

4/7

/

62

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,4
g,1
j,0

8/

1/

/ 2/

3/

/

/

11/

12/

/

9/10

5/6

4/7

/

63

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,4
g,1
j,1

Back Edge to node on Stack:

8/

1/

/ 2/

3/

/

/

11/

12/

/

9/10

5/6

4/7

/

64

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,4
g,1
j,2
m,0

8/

1/

/ 2/

3/

/

/

11/

12/

13/

9/10

5/6

4/7

/

65

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,4
g,1
j,2
m,1

8/

1/

/ 2/

3/

/

/

11/

12/

13/

9/10

5/6

4/7

/

66

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,4
g,1
j,2

8/

1/

/ 2/

3/

/

/

11/

12/

13/14

9/10

5/6

4/7

/

67

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,4
g,1

8/

1/

/ 2/

3/

/

/

11/

12/15

13/14

9/10

5/6

4/7

/

68

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,4

8/

1/

/ 2/

3/

/

/

11/16

12/15

13/14

9/10

5/6

4/7

/

69

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,5
f,0

8/

1/

/ 2/

3/

17/

/

11/16

12/15

13/14

9/10

5/6

4/7

/

70

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,5
f,1

8/

1/

/ 2/

3/

17/

/

11/16

12/15

13/14

9/10

5/6

4/7

/

71

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2
i,5

8/

1/

/ 2/

3/

17/18

/

11/16

12/15

13/14

9/10

5/6

4/7

/

72

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,2 8/19

1/

/ 2/

3/

17/18

/

11/16

12/15

13/14

9/10

5/6

4/7

/

73

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
c,3 8/19

1/

/ 2/

3/

17/18

/

11/16

12/15

13/14

9/10

5/6

4/7

/

Forward Edge

74

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,1
8/19

1/

/ 2/

3/19

17/18

/

11/16

12/15

13/14

9/10

5/6

4/7

/

75

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

a,2
8/19

1/

/ 2/

3/19

17/18

/

11/16

12/15

13/14

9/10

5/6

4/7

/

76

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,1

Found
Not Handled

Stack
<node,# edges>

8/19

1/

/ 2/20

3/19

17/18

/

11/16

12/15

13/14

9/10

5/6

4/7

/

77

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,2

Found
Not Handled

Stack
<node,# edges>

d,0
8/19

1/

/ 2/20

3/19

17/18

21/

11/16

12/15

13/14

9/10

5/6

4/7

/

78

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,2

Found
Not Handled

Stack
<node,# edges>

d,1
8/19

1/

/ 2/20

3/19

17/18

21/

11/16

12/15

13/14

9/10

5/6

4/7

/

79

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,2

Found
Not Handled

Stack
<node,# edges>

d,2
8/19

1/

/ 2/20

3/19

17/18

21/

11/16

12/15

13/14

9/10

5/6

4/7

/

80

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,2

Found
Not Handled

Stack
<node,# edges>

d,3
e,0 8/19

1/

/ 2/20

3/19

17/18

21/

11/16

12/15

13/14

9/10

5/6

4/7

22/

81

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,2

Found
Not Handled

Stack
<node,# edges>

d,3
e,1 8/19

1/

/ 2/20

3/19

17/18

21/

11/16

12/15

13/14

9/10

5/6

4/7

22/

82

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,2

Found
Not Handled

Stack
<node,# edges>

d,3
8/19

1/

/ 2/20

3/19

17/18

21/

11/16

12/15

13/14

9/10

5/6

4/7

22/23

83

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,2

Found
Not Handled

Stack
<node,# edges>

8/19

1/

/ 2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

84

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,3

Found
Not Handled

Stack
<node,# edges>

8/19

1/

/ 2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

85

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,4

Found
Not Handled

Stack
<node,# edges>

b,0
8/19

1/

25/ 2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

86

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,4

Found
Not Handled

Stack
<node,# edges>

b,1
8/19

1/

25/ 2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

87

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,4

Found
Not Handled

Stack
<node,# edges>

b,2
8/19

1/

25/ 2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

88

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,4

Found
Not Handled

Stack
<node,# edges>

b,3
8/19

1/

25/ 2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

89

DFS

s

a

c

h

k

f

i

l

m

j

e

b

g
d

s,4

Found
Not Handled

Stack
<node,# edges>

8/19

1/

25/26 2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

90

DFS

s

Found
Not Handled

Stack
<node,# edges>

Finished!

Tree Edges
Back Edges

a

c

h

k

f

i

l

m

j

e

b

g
d

Cross Edges

8/19

1/27

25/26 2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Forward Edges

91

Classification of Edges in DFS
1.  Tree edges are edges in the depth-first forest Gπ. Edge (u, v) is a tree edge if

v was first discovered by exploring edge (u, v).

2.  Back edges are those edges (u, v) connecting a vertex u to an ancestor v in a
depth-first tree.

3.  Forward edges are non-tree edges (u, v) connecting a vertex u to a
descendant v in a depth-first tree.

4.  Cross edges are all other edges. They can go between vertices in the same
depth-first tree, as long as one vertex is not an ancestor of the other.

s

a

c

h

k

f

i

l

m

j

e

b

g
d

8/19

1/27

25/26 2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

92

Classification of Edges in DFS
1.  Tree edges: Edge (u, v) is a tree edge if v was black when (u, v) traversed.

2.  Back edges: (u, v) is a back edge if v was red when (u, v) traversed.

3.  Forward edges: (u, v) is a forward edge if v was gray when (u, v) traversed
and d[v] > d[u].

4.  Cross edges (u,v) is a cross edge if v was gray when (u, v) traversed and d
[v] < d[u].

s

a

c

h

k

f

i

l

m

j

e

b

g
d

8/19

1/27

25/26 2/20

3/19

17/18

21/24

11/16

12/15

13/14

9/10

5/6

4/7

22/23

Classifying edges can help to identify
properties of the graph, e.g., a graph is
acyclic iff DFS yields no back edges.

93

Undirected Graphs

•  In a depth-first search of an undirected graph, every
edge is either a tree edge or a back edge.

•  Why?

94

Undirected Graphs

•  Suppose that (u,v) is a forward edge or a
cross edge in a DFS of an undirected graph.

•  (u,v) is a forward edge or a cross edge when v
is already handled (grey) when accessed from
u.

•  This means that all vertices reachable from v
have been explored.

•  Since we are currently handling u, u must be red.

•  Clearly v is reachable from u.

•  Since the graph is undirected, u must also be
reachable from v.

•  Thus u must already have been handled: u must
be grey.

•  Contradiction!

u

v

95

Depth-First Search Algorithm

RED

BLACK

GRAY GRAY

BLACK

Precondition: vertex is undiscovered
Postcondition: all vertices reachable from have

DFS-Vi

been p

si

ro

t

s

()

ces ed
u

u

u

BLACK

BLACK

DFS(G)

96

Depth-First Search Algorithm

BLACK

BLACK

RED

BLACK

GRAY GRAY

BLACK

Precondition: vertex is undiscovered
Postcondition: all vertices reachable from have

DFS-Vi

been p

si

ro

t

s

()

ces ed
u

u

u

DFS(G)

θ
∈

=∑total work = | []| ()
v V

Adj v E

θtotal work = ()V

θ +Thus running time = ()V E

Topological Sorting
(e.g., putting tasks in linear order)

An application of Depth-First Search

98

Linear Order

underwear

pants

socks

shoes

underwear
pants
socks
shoes

socks
underwear
pants
shoes

99

Linear Order

underwear

pants

socks

shoes

Too many video games?

100

Linear Order

a

b h
c i
d j
e k

f l

g

Precondition:
 A Directed Acyclic Graph
 (DAG)

Post Condition:
 Find one valid linear order

Algorithm:
• Find a terminal node (sink).
• Put it last in sequence.
• Delete from graph & repeat

….. l

Θ(V)
 Θ(V2)

We can do better!

101

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

d
e
g
f

l

….. f

102

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

d
e
g
l

l
When node is popped off stack, insert at front of linearly-ordered “to do” list.

….. f
Linear Order:

103

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

d
e
g

l

l,f
Linear Order:

104

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

d
e l

g,l,f
Linear Order:

105

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

d l

e,g,l,f
Linear Order:

106

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

l

d,e,g,l,f
Linear Order:

107

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

i l

d,e,g,l,f

j
k

Linear Order:

108

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

i l

k,d,e,g,l,f

j

Linear Order:

109

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

i l

j,k,d,e,g,l,f
Linear Order:

110

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

l

i,j,k,d,e,g,l,f
Linear Order:

111

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

b l
c

i,j,k,d,e,g,l,f
Linear Order:

112

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

b l

c,i,j,k,d,e,g,l,f
Linear Order:

113

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

l

b,c,i,j,k,d,e,g,l,f
Linear Order:

114

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

a l
h

b,c,i,j,k,d,e,g,l,f
Linear Order:

115

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

a l

h,b,c,i,j,k,d,e,g,l,f
Linear Order:

116

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

l

a,h,b,c,i,j,k,d,e,g,l,f Done!
Linear Order:

117

Linear Order
Found

Not Handled
Stack

Proof:
• Case 1: u goes on stack first before v.

• Because of edge,
 v goes on before u comes off
• v comes off before u comes off
• v goes after u in order. 

u v
v… u…

Consider each edge

v

…

u

…

118

Linear Order
Found

Not Handled
Stack

Proof:
• Case 1: u goes on stack first before v.
• Case 2: v goes on stack first before u.
 v comes off before u goes on.

• v goes after u in order. 

u v
v… u…

Consider each edge

u

…
 v

…

119

Linear Order
Found

Not Handled
Stack

Proof:
• Case 1: u goes on stack first before v.
• Case 2: v goes on stack first before u.
 v comes off before u goes on.
Case 3: v goes on stack first before u.
 u goes on before v comes off.

• Panic: u goes after v in order. 
• Cycle means linear order
 is impossible 

u v
u… v…

Consider each edge

u

…

v

…

The nodes in the stack form a path starting at s.

120

Linear Order

a

b h
c i
d j
e k

f

g

Found
Not Handled

Stack

Alg: DFS

l

a,h,b,c,i,j,k,d,e,g,l,f Done!
Linear Order:

ΘAnalysis: (V+E)

Shortest Paths Revisited

122

3

Back to Shortest Path

•  BFS finds the shortest paths from a source node s to
every vertex v in the graph.

•  Here, the length of a path is simply the number of edges
on the path.

•  But what if edges have different ‘costs’?

s

v

(,) 3s vδ = (,) 12s vδ =

2 s

v
2

5 1
7

Single-Source (Weighted) Shortest Paths

124

The Problem

•  What is the shortest driving route from Toronto to Ottawa? (e.g.
MAPQuest, Google Maps)

•  Input:

0 1 1
1

Weight of path , ,..., (,)
k

i ik
i

p v v v w v v−
=

=< > =∑
Shortest-path weight from to :u v

 min{ () : } if a path ,(,) otherwise.

p
w p u v u vu vδ

⎧⎪ → → ∃ → →= ⎨
∞⎪⎩

L L

Shortest path from to is any path such that () (,).u v p w p u vδ=

Directed Graph (,)G V E=

Edge weights :w E→ °

125

Example

Single-source shortest path search induces a search tree rooted at s.

This tree, and hence the paths themselves, are not necessarily unique.

126

Shortest path variants

•  Single-source shortest-paths problem: – the
shortest path from s to each vertex v. (e.g. BFS)

•  Single-destination shortest-paths problem: Find a
shortest path to a given destination vertex t from
each vertex v.

•  Single-pair shortest-path problem: Find a shortest
path from u to v for given vertices u and v.

•  All-pairs shortest-paths problem: Find a shortest
path from u to v for every pair of vertices u and v.

127

Negative-weight edges

•  OK, as long as no negative-weight cycles are reachable
from the source.
–  If we have a negative-weight cycle, we can just keep going

around it, and get w(s, v) = −∞ for all v on the cycle.

–  But OK if the negative-weight cycle is not reachable from the
source.

–  Some algorithms work only if there are no negative-weight edges
in the graph.

128

Optimal substructure

•  Lemma: Any subpath of a shortest path is a shortest path

•  Proof: Cut and paste.

Now suppose there exists a shorter path .
xyp

x y
ʹ′

→ →L

Then () ().xy xyw p w pʹ′ <

Construct p :ʹ′

Then () () () ()ux xy yvw p w p w p w pʹ′ ʹ′= + + () () ()ux xy yvw p w p w p< + + ().w p=

So p wasn't a shortest path after all!

Suppose this path is a shortest path from to .p u v

Then (,) () () () ().ux xy yvu v w p w p w p w pδ = = + +

129

Cycles

•  Shortest paths can’t contain cycles:

–  Already ruled out negative-weight cycles.

–  Positive-weight: we can get a shorter path by omitting the cycle.

–  Zero-weight: no reason to use them  assume that our solutions
won’t use them.

130

Output of a single-source shortest-path algorithm

•  For each vertex v in V:

–  d[v] = δ(s, v).

•  Initially, d[v]=∞.

•  Reduce as algorithm progresses.
 But always maintain d[v] ≥ δ(s, v).

•  Call d[v] a shortest-path estimate.

–  π[v] = predecessor of v on a shortest path from s.

•  If no predecessor, π[v] = NIL.

•  π induces a tree — shortest-path tree.

131

Initialization

•  All shortest-paths algorithms start with the
same initialization:

INIT-SINGLE-SOURCE(V, s)

for each v in V
do d[v]←∞

π[v] ← NIL

d[s] ← 0

132

Relaxing an edge

•  Can we improve shortest-path estimate for v by going through u
and taking (u,v)?

RELAX(u, v,w)

 if d[v] > d[u] + w(u, v) then

 d[v] ← d[u] + w(u, v)

 π[v]← u

133

General single-source shortest-path strategy

1.  Start by calling INIT-SINGLE-SOURCE

2.  Relax Edges

Algorithms differ in the order in which edges are taken
and

how many times each edge is relaxed.

134

Example: Single-source shortest paths in a directed
acyclic graph (DAG)

•  Since graph is a DAG, we are guaranteed no
negative-weight cycles.

135

Algorithm

Time: ()V EΘ +

136

Example

137

Example

138

Example

139

Example

140

Example

141

Example

142

Correctness: Path relaxation property (Lemma 24.15)

0 1 0Let , , . . . , be a shortest path from .k kp v v v s v to v=< > =

0 1 1 2 -1If we relax, in order, (,), (,), . . . , (,), k kv v v v v v

even intermixed with other relaxations,
then [] (,).k kd v s vδ=

143

Correctness of DAG Shortest Path Algorithm

•  Because we process vertices in topologically sorted
order, edges of any path are relaxed in order of
appearance in the path.

–  Edges on any shortest path are relaxed in order.

–  By path-relaxation property, correct.

144

Example: Dijkstra’s algorithm

•  Applies to general weighted directed graph (may contain
cycles).

•  But weights must be non-negative.

•  Essentially a weighted version of BFS.
–  Instead of a FIFO queue, uses a priority queue.

–  Keys are shortest-path weights (d[v]).

•  Maintain 2 sets of vertices:
–  S = vertices whose final shortest-path weights are determined.

–  Q = priority queue = V-S.

145

Dijkstra’s algorithm

  Dijkstra’s algorithm can be viewed as greedy, since it always
chooses the “lightest” vertex in V − S to add to S.

146

Dijkstra’s algorithm: Analysis

  Analysis:
  Using minheap, queue operations takes O(logV) time

()O V

(log)O V () iterationsO V×

(log)O V () iterationsO E×

Running Time is (log)O E V→

147

Example

⇔

⇔

⇔Grey Handling
B

White N

lack

ot Fo

 Ha

und

ndled

Key:

148

Example

149

Example

150

Example

151

Example

152

Example

153

Correctness of Dijkstra’s algorithm

•  Loop invariant: d[v] = δ(s, v) for all v in S.
–  Initialization: Initially, S is empty, so trivially true.

–  Termination: At end, Q is empty S = V  d[v] = δ(s, v) for all v in V.

–  Maintenance:
•  Need to show that

–  d[u] = δ(s, u) when u is added to S in each iteration.
–  d[u] does not change once u is added to S.

154

Correctness of Dijkstra’s Algorithm: Upper Bound Property

•  Upper Bound Property:
1. [] (,)d v s v v Vδ≥ ∀ ∈

•  Proof:
By induction.

 [] (,) immediately after initialization, since
[] 0 (,

Base Cas :

[]

e
)

d v s v v V
d s s s
d v v s

δ

δ

≥ ∀ ∈

= =

= ∞∀ ≠

δ≥ ∀ ∈Suppose
Inductive Step:

 [] (,)d x s x x V

(,) (,)s u w u vδ≥ +

(,)s vδ≥

If [] changes, then [] [] (,)d v d v d u w u v= +

Suppose we relax edge (,).u v

2. Once [] (,), it doesn't changed v s vδ=

155

Correctness of Dijkstra’s Algorithm

When is added to Clai , [] (m): ,u S d u s uδ=

Let be first vertex in on shortest path to y V S u−

Let be the predecessor of on the shortest path to x y u

 [] (,) when is added toCl : .aim d y s y u Sδ=

Proof:
[] (,), since x .d x s x Sδ= ∈

(,) was relaxed when was added to x y x S [] (,) (,) (,)d y s x w x y s yδ δ→ = + =

Handled

Let be the first vertex added to
such tha
Proof by Con

t [] (,) when is added.
tradiction: u S

d u s u uδ≠

156

Correctness of Dijkstra’s Algorithm
Thus [] (,) when is added to .d y s y u Sδ=

[] (,) (,) [] (upper bound property)d y s y s u d uδ δ→ = ≤ ≤

But [] [] when added to d u d y u S≤

Thus [] (,) (,) []!d y s y s u d uδ δ= = =

Thus when is added to , [] (,)u S d u s uδ=

There is a shortest path to such that the predecessor of []
Conse

 whe
quences

n is added to .
:

u u u S u Sπ ∈

π []u

=2The path through can only be a shortest path if [] 0.y w p

Handled

157

Correctness of Dijkstra’s algorithm

•  Loop invariant: d[v] = δ(s, v) for all v in S.
–  Maintenance:

•  Need to show that
–  d[u] = δ(s, u) when u is added to S in each iteration.

–  d[u] does not change once u is added to S.

δ=Thus once [] (,), it will not be changed.d v s v

 can only decRelax(u rease],v,w) [.d v
δ≥upper bound prBy the , operty [] (,).d v s v


?

