Graph Search Algorithms

Graph

A surprisingly large number of computational problems can be expressed as graph problems.

Directed and Undirected Graphs

(b)

(c)
(a) A directed graph $G=(V, E)$, where $V=\{1,2,3,4,5,6\}$ and $E=\{(1,2),(2,2),(2,4),(2,5),(4,1),(4,5),(5,4),(6,3)\}$. The edge $(2,2)$ is a self-loop.
(b) An undirected graph $G=(V, E)$, where $V=\{1,2,3,4,5,6\}$ and $E=\{(1,2),(1,5),(2,5),(3,6)\}$. The vertex 4 is isolated.
(c) The subgraph of the graph in part (a) induced by the vertex set $\{1,2,3,6\}$.

Trees

Tree

Forest

Graph with Cycle

A tree is a connected, acyclic, undirected graph.
A forest is a set of trees (not necessarily connected)

Running Time of Graph Algorithms

- Running time often a function of both $|\mathrm{V}|$ and $|\mathrm{E}|$.
- For convenience, drop the | . | in asymptotic notation, e.g. $O(V+E)$.

Representations: Undirected Graphs

Space complexity:
Time to find all neighbours of vertex $u: \theta($ degree $(u))$
Time to determine if $(u, v) \in E$:
$\theta($ degree $(u))$

Adjacency List $\theta(V+E)$

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

Adjacency Matrix

$$
\theta\left(V^{2}\right)
$$

Representations: Directed Graphs

Space complexity:
Time to find all neighbours of vertex $u: \theta($ degree $(u))$
Time to determine if $(u, v) \in E$:
$\theta($ degree $(u))$

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

Adjacency Matrix

Breadth-First Search

- Goal: To recover the shortest paths from a source node s to all other reachable nodes v in a graph.
- The length of each path and the paths themselves are returned.
- Notes:
- There are an exponential number of possible paths
- This problem is harder for general graphs than trees because of cycles!

Breadth-First Search

Input: Graph $G=(V, E)$ (directed or undirected) and source vertex $s \in V$.

Output:

$d[v]=$ shortest path distance $\delta(s, v)$ from s to $v, \forall v \in V$.
$\pi[v]=u$ such that (u, v) is last edge on a shortest path from s to v.

- Idea: send out search 'wave’ from s.
- Keep track of progress by colouring vertices:
- Undiscovered vertices are coloured black
- Just discovered vertices (on the wavefront) are coloured red.
- Previously discovered vertices (behind wavefront) are coloured grey.

BFS
First-In First-Out (FIFO) queue stores 'just discovered' vertices

Not Handled
Queue

Breadth-First Search Algorithm

$\mathrm{BFS}(G, s)$
1 for each vertex $u \in V[G]-\{s\}$
2 do color $[u] \leftarrow$ BLACK
$d[u] \leftarrow \infty$
$\pi[u] \leftarrow$ NIL
color $[s] \leftarrow$ RED
$d[s] \leftarrow 0$
$\pi[s] \leftarrow \mathrm{NIL}$
$Q \leftarrow \emptyset$
Enqueue (Q, s)
while $Q \neq \emptyset$
do $u \leftarrow \operatorname{DEQUEUE}(Q)$
for each $v \in \operatorname{Adj}[u]$ do if color $[v]=$ BLACK
then color $[v] \leftarrow$ RED $d[v] \leftarrow d[u]+1$
$\pi[v] \leftarrow u$ EnQueue (Q, v)
color $[u] \leftarrow$ GRAY

- Q is a FIFO queue.
- Each vertex assigned finite d value at most once.
- Q contains vertices with d values $\{i, \ldots, i, i+1, \ldots, i+1\}$
- d values assigned are monotonically increasing over time.

Breadth-First-Search is Greedy

- Vertices are handled:
- in order of their discovery (FIFO queue)
- Smallest d values first

Correctness

Basic Steps:

The shortest path to u has length d
\& there is an edge
from u to v

There is a path to v with length $\mathrm{d}+1$.

Correctness

- Vertices are discovered in order of their distance from the source vertex s.
- When we discover v, how do we know there is not a shorter path to v ?
- Because if there was, we would already have discovered it!

Correctness

Input: Graph $G=(V, E)$ (directed or undirected) and source vertex $s \in V$.
Output:
$d[v]=$ distance from s to $v, \forall v \in V$.
$\pi[v]=u$ such that (u, v) is last edge on shortest path from s to v.

Two-step proof:
On exit:

1. $d[v] \geq \delta(s, v) \forall v \in V$
2. $d[v] \ngtr \delta(s, v) \forall v \in V$

Claim 1. d is never too small: $d[v] \geq \delta(s, v) \forall v \in V$
Proof: There exists a path from s to v of length $d[v]$.

By Induction:
Suppose it is true for all vertices thus far discovered (red and grey).
v is discovered from some adjacent vertex u being handled.

$$
\begin{aligned}
\rightarrow d[v] & =d[u]+1 \\
& \geq \delta(s, u)+1 \\
& \geq \delta(s, v)
\end{aligned}
$$

since each vertex v is assigned a d value exactly once, it follows that on exit, $d[v] \geq \delta(s, v) \forall v \in V$.

Claim 1. d is never too small: $d[v] \geq \delta(s, v) \forall v \in V$
Proof: There exists a path from s to v of length $d[v]$.

```
\(\mathrm{BFS}(G, s)\)
    1 for each vertex \(u \in V[G]-\{s\}\)
2 do color \([u] \leftarrow\) BLACK
\(3 d[u] \leftarrow \infty\)
\(4 \quad \pi[u] \leftarrow\) NIL
color \([s] \leftarrow\) RED
\(d[s] \leftarrow 0\)
\(\pi[s] \leftarrow \mathrm{NIL}\)
\(Q \leftarrow \emptyset\)
Enqueue \((Q, s)\)
while \(Q \neq \emptyset \quad \leftarrow<L \mid>: d[v] \geq \delta(s, v) \forall\) 'discovered' (red or grey) \(v \in V\)
    do \(u \leftarrow \operatorname{DEQUEUE}(Q)\)
        for each \(v \in \operatorname{Adj}[u]\)
        do if color \([v]=\) BLACK
            then color \([\nu] \leftarrow\) RED
                    \(\frac{d[v] \leftarrow d[u]+1}{\pi[v] \leftarrow u} \geq \delta(s, u)+1 \geq \delta(s, v)\)
                Enqueue \((Q, v)\)
    color \([u] \leftarrow\) GRAY
```


Claim 2. d is never too big: $d[v] \leq \delta(s, v) \forall v \in V$

Proof by contradiction:

Suppose one or more vertices receive a d value greater than δ.
Let v be the vertex with minimum $\delta(s, v)$ that receives such a d value.
Suppose that v is discovered and assigned this d value when vertex x is dequeued.
Let u be v 's predecessor on a shortest path from s to v.
Then

$$
\begin{aligned}
\delta(s, v) & <d[v] \\
\rightarrow \delta(s, v)-1 & <d[v]-1 \\
\rightarrow d[u] & <d[x]
\end{aligned}
$$

Recall: vertices are dequeued in increasing order of d value.
$\rightarrow u$ was dequeued before x.
$\rightarrow d[v]=d[u]+1=\delta(s, v) \quad$ Contradiction!

Correctness

Claim 1. d is never too small: $d[v] \geq \delta(s, v) \forall v \in V$ Claim 2. d is never too big: $d[v] \leq \delta(s, v) \forall v \in V$
$\Rightarrow d$ is just right: $d[v]=\delta(s, v) \forall v \in V$

Progress?

- On every iteration one vertex is processed (turns gray).
$\operatorname{BFS}(G, s)$
1 for each vertex $u \in V[G]-\{s\}$
2 do color $[u] \leftarrow$ BLACK
$d[u] \leftarrow \infty$
$\pi[u] \leftarrow \mathrm{NIL}$
color $[s] \leftarrow$ RED
$d[s] \leftarrow 0$
$\pi[s] \leftarrow \mathrm{NIL}$
$Q \leftarrow \emptyset$
EnQueue (Q, s)
while $Q \neq \emptyset$
do $u \leftarrow \operatorname{DEQUEUE}(Q)$
for each $v \in \operatorname{Adj}[u]$
do if color $[v]=$ BLACK
then color $[v] \leftarrow$ RED
$d[v] \leftarrow d[u]+1$
$\pi[v] \leftarrow u$ Enqueue (Q, v)
color $[u] \leftarrow$ GRAY

Running Time

Each vertex is enqueued at most once $\rightarrow O(V)$
Each entry in the adjacency lists is scanned at most once $\rightarrow O(E)$
Thus run time is $O(V+E)$.

```
\(\operatorname{BFS}(G, s)\)
    for each vertex \(u \in V[G]-\{s\}\)
        do color \([u] \leftarrow\) BLACK
            \(d[u] \leftarrow \infty\)
        \(\pi[u] \leftarrow\) NIL
color \([s] \leftarrow\) RED
\(d[s] \leftarrow 0\)
\(\pi[s] \leftarrow\) NIL
\(Q \leftarrow \emptyset\)
EnQUEUE \((Q, s)\)
while \(Q \neq \emptyset\)
        do \(u \leftarrow \operatorname{DEQUEUE}(Q)\)
        for each \(v \in \operatorname{Adj}[u]\)
            do if color \([v]=\) BLACK
                    then color \(\lfloor v\rfloor \leftarrow\) RED
                                    \(d[v] \leftarrow d[u]+1\)
                                    \(\pi[v] \leftarrow u\)
                                    EnQueve \((Q, v)\)
    color \([u] \leftarrow\) GRAY
```


Optimal Substructure Property

- The shortest path problem has the optimal substructure property:
- Every subpath of a shortest path is a shortest path.

- The optimal substructure property
- is a hallmark of both greedy and dynamic programming algorithms.
- allows us to compute both shortest path distance and the shortest paths themselves by storing only one d value and one predecessor value per vertex.

Recovering the Shortest Path
For each node v , store predecessor of v in $\pi(\mathrm{v})$.

Recovering the Shortest Path

PRINT-PATH(G, s, v)
Precondition: s and v are vertices of graph G
Postcondition: the vertices on the shortest path from s to v have been printed in order if $v=s$ then print s
else if $\pi[v]=$ NIL then print "no path from" s "to" v "exists" else

```
PRINT-PATH(G, s, \pi[v])
``` print \(v\)

\section*{Colours are actually not required}
```

$\operatorname{BFS}(V, E, s)$
for each $u \in V-\{s\}$
do $d[u] \leftarrow \infty$
$d[s] \leftarrow 0$
$Q \leftarrow \emptyset$
EnQueue $(Q, s)$
while $Q \neq \emptyset$
do $u \leftarrow \operatorname{DEQUEUE}(Q)$
for each $v \in \operatorname{Adj}[u]$
do if $d[v]=\infty$
then $d[v] \leftarrow d[u]+1$
EnQUEUE $(Q, v)$

```

\section*{Depth First Search (DFS)}
- Idea:
- Continue searching "deeper" into the graph, until we get stuck.
- If all the edges leaving \(v\) have been explored we "backtrack" to the vertex from which \(v\) was discovered.
- Does not recover shortest paths, but can be useful for extracting other properties of graph, e.g.,
- Topological sorts
- Detection of cycles
- Extraction of strongly connected components

\section*{Depth-First Search}

Input: Graph \(G=(V, E)\) (directed or undirected)
Output: 2 timestamps on each vertex:
\(d[v]=\) discovery time.
\(f[v]=\) finishing time.
\[
1 \leq d[v]<f[v] \leq 2|V|
\]
- Explore every edge, starting from different vertices if necessary.
- As soon as vertex discovered, explore from it.
- Keep track of progress by colouring vertices:
- Black: undiscovered vertices
- Red: discovered, but not finished (still exploring from it)
- Gray: finished (found everything reachable from it).

DFS Note: Stack is Last-In First-Out (LIFO)

\section*{DFS}

Found
Not Handled

DFS
Found
Not Handled

DFS
Found
Not Handled

DFS
Found
Not Handled

DFS
Found
Not Handled

\section*{DFS}

Found
Not Handled

DFS
Found
Not Handled
Stack
<node,\# edges>
\(\mathrm{c}, 1\)
\(\mathrm{a}, 1\)
\(\mathrm{~s}, 1\)

DFS
Found
Not Handled

\section*{DFS}

Cross Edge to handled node: \(d[h]<d[i]\)

Found
Not Handled Stack <node,\# edges>

DFS
Found
Not Handled

\section*{DFS}

Found
Not Handled
Stack
<node,\# edges>

DFS
Found
Not Handled

\section*{DFS}

Found
Not Handled Stack
<node,\# edges>
i,3
\(c, 2\)
a,1
s, 1

\section*{DFS}

Found
Not Handled

\section*{DFS}

Found
Not Handled
Stack
<node,\# edges>
\(\mathrm{j}, 0\)
\(\mathrm{~g}, 1\)
\(\mathrm{i}, 4\)
\(\mathrm{c}, 2\)
\(\mathrm{a}, 1\)
\(\mathrm{~s}, 1\)

\section*{DFS}

\section*{DFS}

Found
Not Handled
Stack
<node,\# edges>
\begin{tabular}{|l|}
\\
\(\mathrm{m}, 0\) \\
\(\mathrm{j}, 2\) \\
\(\mathrm{~g}, 1\) \\
\(\mathrm{i}, 4\) \\
\(\mathrm{c}, 2\) \\
\(\mathrm{a}, 1\) \\
\(\mathrm{~s}, 1\)
\end{tabular}

\section*{DFS}

Found
Not Handled
Stack
<node,\# edges>
\(\mathrm{m}, 1\)
\(\mathrm{j}, 2\)
\(\mathrm{~g}, 1\)
\(\mathrm{i}, 4\)
\(\mathrm{c}, 2\)
\(\mathrm{a}, 1\)
\(\mathrm{~s}, 1\)

\section*{DFS}

Found
Not Handled
Stack
<node,\# edges>
\(\mathrm{j}, 2\)
\(\mathrm{~g}, 1\)
\(\mathrm{i}, 4\)
\(\mathrm{c}, 2\)
\(\mathrm{a}, 1\)
\(\mathrm{~s}, 1\)

\section*{DFS}

Found
Not Handled
Stack
<node,\# edges>

\section*{DFS}

Found
Not Handled
Stack
<node,\# edges>

\section*{DFS}

Found
Not Handled
Stack
<node,\# edges>
f,0
i,5
c,
a,1
\(\mathrm{s}, 1\)

\section*{DFS}

Found
Not Handled

\section*{DFS}

Found
Not Handled

\section*{DFS}

Found
Not Handled
Stack
<node,\# edges>
\begin{tabular}{|l|l}
\\
\\
\\
& \\
\(c, 2\) \\
\(\mathrm{a}, 1\) \\
\(\mathrm{~s}, 1\)
\end{tabular}

\section*{DFS}

\section*{Forward Edge}

Found
Not Handled
Stack
<node,\# edges>

\section*{DFS}

Found
Not Handled
Stack
<node,\# edges>
a,1
\(\mathrm{s}, 1\)

\section*{DFS}

Found
Not Handled

\section*{DFS}

Found
Not Handled
Stack
<node,\# edges>

\section*{DFS}

Found
Not Handled
Stack
<node,\# edges>

\section*{DFS}

Found
Not Handled
Stack
<node,\# edges>
d,2
\(\mathrm{s}, 2\)

\section*{DFS}

Found
Not Handled

DFS

DFS

DFS

DFS

\section*{DFS}

\(\longrightarrow\) Tree Edges DFS
\(\longrightarrow\) Back Edges
\(\longrightarrow\) Forward Edges
\(\longrightarrow\) Cross Edges

\section*{Classification of Edges in DFS}
1. Tree edges are edges in the depth-first forest \(G_{\pi}\). Edge \((u, v)\) is a tree edge if \(v\) was first discovered by exploring edge (\(u, v\)).
2. Back edges are those edges \((u, v)\) connecting a vertex \(u\) to an ancestor \(v\) in a depth-first tree.
3. Forward edges are non-tree edges \((u, v)\) connecting a vertex \(u\) to a descendant \(v\) in a depth-first tree.
4. Cross edges are all other edges. They can go between vertices in the same depth-first tree, as long as one vertex is not an ancestor of the other.

\section*{Classification of Edges in DFS}
1. Tree edges: Edge \((u, v)\) is a tree edge if \(v\) was black when \((u, v)\) traversed.
2. Back edges: \((u, v)\) is a back edge if \(v\) was red when \((u, v)\) traversed.
3. Forward edges: \((u, v)\) is a forward edge if \(v\) was gray when \((u, v)\) traversed and \(d[v]>d[u]\).
4. Cross edges \((u, v)\) is a cross edge if \(v\) was gray when \((u, v)\) traversed and \(d\) \([v]<d[u]\).

Classifying edges can help to identify properties of the graph, e.g., a graph is acyclic iff DFS yields no back edges.

\section*{Undirected Graphs}
- In a depth-first search of an undirected graph, every edge is either a tree edge or a back edge.
- Why?

\section*{Undirected Graphs}
- Suppose that (\(\mathbf{u}, \mathbf{v}\)) is a forward edge or a cross edge in a DFS of an undirected graph.
- (\(\mathbf{u}, \mathbf{v}\)) is a forward edge or a cross edge when v is already handled (grey) when accessed from u.
- This means that all vertices reachable from \(\mathbf{v}\) have been explored.
- Since we are currently handling u, u must be red.
- Clearly v is reachable from u .
- Since the graph is undirected, u must also be
 reachable from v .
- Thus u must already have been handled: u must be grey.
- Contradiction!

\section*{Depth-First Search Algorithm}

1 for each vertex \(u \in V[G]\)
 \(\pi[u] \leftarrow\) NIL

4 time \(\leftarrow 0\)
5 for each vertex \(u \in V[G]\)
6 do if color \([u]=\) BLACK
7 then DFS-Visit (\(u\))
DFS-Visit (u)
Precondition: vertex \(u\) is undiscovered
Postcondition: all vertices reachable from \(u\) have been processed
1 color \([u] \leftarrow\) RED
DBLACK vertex \(u\) has just been discovered.
2 time \(\leftarrow\) time +1
\(3 d[u] \leftarrow\) time
4 for each \(v \in \operatorname{Adj}[u] \quad \nabla\) Explore edge \((u, v)\).
5 do if \(\operatorname{color}[v]=\) BLACK
\(6 \quad\) then \(\pi[v] \leftarrow u\)
7 DFS-VISIT(v)
8 color \([u] \leftarrow\) GRAY \(\quad \triangleright\) GRAY \(u\); it is finished.
\(9 f[u] \leftarrow\) time \(\leftarrow\) time +1

\section*{Depth-First Search Algorithm}

1 for each vertex \(u \in V[G]\)
2 do color \([u] \leftarrow\) BLACK
3 \(\pi[u] \leftarrow\) NIL
time \(\leftarrow 0\)
for each vertex \(u \in V[G]\)
do if color \([u]=\) BLACK then DFS-VISIT (\(u\))

Thus running time \(=\theta(V+E)\)
DFS-Visit (u)
Precondition: vertex \(u\) is undiscovered
Postcondition: all vertices reachable from \(u\) have been processed
color \([u] \leftarrow\) RED \(\quad\) DBLACK vertex \(u\) has just been discovered.
2 time \(\leftarrow\) time +1
\(3 d[u] \leftarrow\) time
4 for each \(v \in \operatorname{Adj}[u] \quad \nabla\) Explore edge (\(u, v\)).
\(\left.\begin{array}{lc}5 & \text { do if } \text { color }[v]=\operatorname{BLACK} \\ 6 & \text { then } \pi[v] \leftarrow u \\ 7 & \text { DFS-VISIT }(v)\end{array}\right\}\) total work \(=\sum_{v \in l}|\operatorname{Adj}[V]|=\theta(E)\)
8 color \([u] \leftarrow\) GRAY \(\quad \triangleright\) GRAY \(u\); it is finished.
\(9 f[u] \leftarrow\) time \(\leftarrow\) time +1

\title{
Topological Sorting \\ (e.g., putting tasks in linear order)
}

An application of Depth-First Search

\section*{Linear Order}

\section*{Linear Order}

\section*{Linear Order}

Precondition:
A Directed Acyclic Graph (DAG)

Post Condition:
Find one valid linear order
Algorithm:
-Find a terminal node (sink)
-Put it last in sequence.
\(\bullet\) Delete from graph \& repeat \(\Theta\left(Y^{2}\right)\)
We can do better!

Linear Order
Alg: DFS

Found Not Handled Stack

\author{
f
g
e
\(d\)
}
..... f

\section*{Linear Order}

Alg: DFS

Found Not Handled Stack

When node is popped off stack, insert at front of linearly-ordered "to do" list.
Linear Order:
\[
\ldots . . \mathrm{f}
\]

\section*{Linear Order}

Alg: DFS

Found Not Handled Stack

Linear Order:
1,f

\section*{Linear Order}

\section*{Alg: DFS}

Found Not Handled Stack

Linear Order:
\[
\mathrm{g}, 1, \mathrm{f}
\]

Linear Order
Alg: DFS

Found Not Handled Stack
\(\mid\)

Linear Order:
\[
\mathrm{e}, \mathrm{~g}, \mathrm{l}, \mathrm{f}
\]

Linear Order
Alg: DFS

Found Not Handled Stack

Linear Order:
d,e,g,l,f

Linear Order
Alg: DFS

Found Not Handled Stack

Linear Order:
\[
\mathrm{d}, \mathrm{e}, \mathrm{~g}, 1, \mathrm{f}
\]

\section*{Linear Order}

\section*{Alg: DFS}

Found Not Handled Stack

Linear Order:
k,d,e,g,l,f

\section*{Linear Order}

\section*{Alg: DFS}

Found Not Handled Stack

Linear Order:
\[
\underset{109}{\mathrm{j}, \mathrm{k}, \mathrm{~d}, \mathrm{e}, \mathrm{~g}, \mathrm{l}, \mathrm{f}}
\]

\section*{Linear Order}

\section*{Alg: DFS}

Found Not Handled Stack

Linear Order:
i,j,k,d,e,g,l,f

\section*{Linear Order}

\section*{Alg: DFS}

Found Not Handled Stack

C
b

Linear Order:
i,j,k,d,e,g,l,f

\section*{Linear Order}

\section*{Alg: DFS}

Found Not Handled Stack
b

Linear Order:
\[
\mathrm{c}, \mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{~d}, \mathrm{e}, \mathrm{~g}, \mathrm{l}, \mathrm{f}
\]

\section*{Linear Order}

Alg: DFS

Found Not Handled Stack

Linear Order:
\[
\mathrm{b}, \mathrm{c}, \mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{~d}, \mathrm{e}, \mathrm{~g}, \mathrm{l}, \mathrm{f}
\]

\footnotetext{
113
}

\section*{Linear Order}

\section*{Alg: DFS}

Found Not Handled Stack
h
a

Linear Order:
\[
\mathrm{b}, \mathrm{c}, \mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{~d}, \mathrm{e}, \mathrm{~g}, 1, \mathrm{f}
\]

\footnotetext{
114
}

\section*{Linear Order}

Alg: DFS

Found Not Handled Stack
a

Linear Order:
h,b,c,i,j,k,d,e,g,l,f

\section*{Linear Order}

\section*{Alg: DFS}

Found
Not Handled Stack

Linear Order:
a,h,b,c,i,j,k,d,e,g,l,f Done!

\section*{Linear Order}

Proof: Consider each edge
- Case 1: u goes on stack first before v .
-Because of edge,
v goes on before \(u\) comes off
-v comes off before u comes off
-v goes after u in order. ©

Found
Not Handled
Stack
v
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
U...V...

\section*{Linear Order}

Proof: Consider each edge
-Case 1: u goes on stack first before v .
- Case 2: v goes on stack first before \(u\). \(v\) comes off before \(u\) goes on. \(\bullet\)-v goes after u in order. ©

Found
Not Handled
Stack

V
U...V...

\section*{Linear Order}

Proof: Consider each edge
- Case 1: u goes on stack first before v .
- Case 2: v goes on stack first before \(u\). \(v\) comes off before \(u\) goes on.
Case 3: \(v\) goes on stack first before \(u\). \(u\) goes on before \(v\) comes off.
-Panic: u goes after v in order. :) -Cycle means linear order is impossible ()

The nodes in the stack form a path starting at s . \(\mathrm{u} \bullet \longrightarrow \mathrm{V}\)
v...u...

\section*{Linear Order}

Alg: DFS

Found
Not Handled Stack

Analysis: \(\Theta(V+E)\)

Linear Order:
a,h,b,c,i,j,k,d,e,g,l,f Done!

\section*{Shortest Paths Revisited}

\section*{Back to Shortest Path}
- BFS finds the shortest paths from a source node sto every vertex \(v\) in the graph.
- Here, the length of a path is simply the number of edges on the path.
- But what if edges have different 'costs'?

\section*{Single-Source (Weighted) Shortest Paths}

\section*{The Problem}
- What is the shortest driving route from Toronto to Ottawa? (e.g. MAPQuest, Google Maps)
- Input:

Directed Graph \(G=(V, E)\)
Edge weights \(w: E \rightarrow{ }^{\circ}\)
Weight of path \(p=<v_{0}, v_{1}, \ldots, v_{k}>=\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)\)
Shortest-path weight from \(u\) to \(v\) :
\(\delta(u, v)= \begin{cases}\min \left\{w(p): u \rightarrow \mathrm{~L}^{p} \rightarrow v\right\} & \text { if } \exists \text { a path } u \rightarrow \mathrm{~L} \rightarrow v, \\ \infty & \text { otherwise. }\end{cases}\)
Shortest path from \(u\) to \(v\) is any path \(p\) such that \(w(p)=\delta(u, v)\).

\section*{Example}

(a)

(b)

(c)

Single-source shortest path search induces a search tree rooted at \(\boldsymbol{s}\).
This tree, and hence the paths themselves, are not necessarily unique.

\section*{Shortest path variants}
- Single-source shortest-paths problem: - the shortest path from \(s\) to each vertex v. (e.g. BFS)
- Single-destination shortest-paths problem: Find a shortest path to a given destination vertex \(t\) from each vertex \(v\).
- Single-pair shortest-path problem: Find a shortest path from \(u\) to \(v\) for given vertices \(u\) and \(v\).
- All-pairs shortest-paths problem: Find a shortest path from \(u\) to \(v\) for every pair of vertices \(u\) and \(v\).

\section*{Negative-weight edges}
- OK, as long as no negative-weight cycles are reachable from the source.
- If we have a negative-weight cycle, we can just keep going around it, and get \(\mathrm{w}(\mathrm{s}, \mathrm{v})=-\infty\) for all v on the cycle.
- But OK if the negative-weight cycle is not reachable from the source.
- Some algorithms work only if there are no negative-weight edges in the graph.

\section*{Optimal substructure}
- Lemma: Any subpath of a shortest path is a shortest path
- Proof: Cut and paste.

Suppose this path \(p\) is a shortest path from \(u\) to \(v\).

Then \(\delta(u, v)=w(p)=w\left(p_{u x}\right)+w\left(p_{x y}\right)+w\left(p_{y v}\right)\).
Now suppose there exists a shorter path \(x \rightarrow \mathrm{~L}^{p_{i, 1}^{\prime}} \rightarrow y\).
Then \(w\left(p_{x y}^{\prime}\right)<w\left(p_{x y}\right)\).
Construct \(p^{\prime}\) :

Then \(w\left(p^{\prime}\right)=w\left(p_{u x}\right)+w\left(p_{x y}^{\prime}\right)+w\left(p_{y v}\right)<w\left(p_{u x}\right)+w\left(p_{x y}\right)+w\left(p_{y v}\right)=w(p)\).
So p wasn't a shortest path after all!

\section*{Cycles}
- Shortest paths can't contain cycles:
- Already ruled out negative-weight cycles.
- Positive-weight: we can get a shorter path by omitting the cycle.
- Zero-weight: no reason to use them \(\rightarrow\) assume that our solutions won't use them.

\section*{Output of a single-source shortest-path algorithm}
- For each vertex v in V :
\(-\mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v})\).
- Initially, \(\mathrm{d}[\mathrm{v}]=\infty\).
- Reduce as algorithm progresses. But always maintain \(\mathrm{d}[\mathrm{v}] \geq \delta(\mathrm{s}, \mathrm{v})\).
- Call \(\mathrm{d}[\mathrm{v}]\) a shortest-path estimate.
\(-\pi[\mathrm{v}]=\) predecessor of v on a shortest path from s .
- If no predecessor, \(\pi[\mathrm{v}]=\) NIL.
- \(\pi\) induces a tree - shortest-path tree.

\section*{Initialization}
- All shortest-paths algorithms start with the same initialization:

INIT-SINGLE-SOURCE(V, s)
for each \(v\) in \(V\)
do \(\mathrm{d}[\mathrm{V}] \leftarrow \infty\)
\(\pi[\mathrm{v}] \leftarrow \mathrm{NIL}\)
\(\mathrm{d}[\mathrm{s}] \leftarrow 0\)

\section*{Relaxing an edge}
- Can we improve shortest-path estimate for v by going through u and taking (\(u, v\))?
\(\operatorname{RELAX}(u, v, w)\)
if \(d[v]>d[u]+w(u, v)\) then
\[
\mathrm{d}[\mathrm{v}] \leftarrow \mathrm{d}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v})
\]
\[
\pi[v] \leftarrow u
\]

\title{
General single-source shortest-path strategy
}
1. Start by calling INIT-SINGLE-SOURCE
2. Relax Edges

Algorithms differ in the order in which edges are taken and
how many times each edge is relaxed.

\section*{Example: Single-source shortest paths in a directed acyclic graph (DAG)}
- Since graph is a DAG, we are guaranteed no negative-weight cycles.

(a)

\section*{Algorithm}

Dag-Shortest-Paths (\(G, w, s\))
1 topologically sort the vertices of \(G\)
2 Initialize-Single-Source \((G, s)\)
3 for each vertex \(u\), taken in topologically sorted order
\(4 \quad\) do for each vertex \(v \in \operatorname{Adj}[u]\)
5 do \(\operatorname{ReLax}(u, v, w)\)

\section*{Time: \(\Theta(V+E)\)}

\section*{Example}

\section*{Example}

\section*{Example}

\section*{Example}

\section*{Example}

\section*{Example}

Correctness: Path relaxation property (Lemma 24.15)

Let \(p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle\) be a shortest path from \(s=v_{0}\) to \(v_{k}\).
If we relax, in order, \(\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right)\),
even intermixed with other relaxations,
then \(d\left[v_{k}\right]=\delta\left(s, v_{k}\right)\).

\section*{Correctness of DAG Shortest Path Algorithm}
- Because we process vertices in topologically sorted order, edges of any path are relaxed in order of appearance in the path.
\(-\rightarrow\) Edges on any shortest path are relaxed in order.
\(-\rightarrow\) By path-relaxation property, correct.

\section*{Example: Dijkstra's algorithm}
- Applies to general weighted directed graph (may contain cycles).
- But weights must be non-negative.
- Essentially a weighted version of BFS.
- Instead of a FIFO queue, uses a priority queue.
- Keys are shortest-path weights (d[v]).
- Maintain 2 sets of vertices:
- \(S=\) vertices whose final shortest-path weights are determined.
\(-\mathrm{Q}=\) priority queue \(=\mathrm{V}-\mathrm{S}\).

\section*{Dijkstra's algorithm}
```

Dijkstra( }G,w,s
1 Initialize-Single-Source( }G,s
2 S}\leftarrow
3 Q}\leftarrowV[G
4 while Q
5 do }u\leftarrow\mathrm{ EXtrACT-MIN(Q)
S\leftarrowS\cup{u}
for each vertex v}\operatorname{Adj}[u
do Relax (u,v,w)

```
- Dijkstra's algorithm can be viewed as greedy, since it always chooses the "lightest" vertex in \(V-S\) to add to \(S\).

\section*{Dijkstra's algorithm: Analysis}
- Analysis:

Using minheap, queue operations takes \(O(\log V)\) time
```

Dijkstra $(G, w, s)$
1 Initialize-Single-Source $(G, s) O(V)$
$2 \quad S \leftarrow \emptyset$
$3 \quad Q \leftarrow V[G]$
4 while $Q \neq \emptyset$
5 do $u \leftarrow$ Extract- $\operatorname{Min}(Q) \quad O(\log V) \times O(V)$ iterations
7 for each vertex $v \in \operatorname{Adj}[u]$
8
$S \leftarrow S \cup\{u\}$
do $\operatorname{Relax}(u, v, w) \quad O(\log V) \times O(E)$ iterations
$\rightarrow$ Running Time is $O(E \log V)$

```

\section*{Key:}

\section*{Example}

White \(\Leftrightarrow\) Not Found Grey \(\Leftrightarrow\) Handling
Black \(\Leftrightarrow\) Handled

(a)

\section*{Example}

\section*{Example}

\section*{Example}

\section*{Example}

\section*{Example}

\section*{Correctness of Dijkstra's algorithm}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Diskstra \((G, w, s)\)} \\
\hline 1 & Initialize-Single-Source \((G, s)\) \\
\hline 2 & \(S \leftarrow \emptyset\) \\
\hline 3 & \(Q \leftarrow V[G]\) \\
\hline 4 & while \(Q \neq \emptyset\) \\
\hline 5 & do \(u \leftarrow\) Extract-Min \((Q)\) \\
\hline 6 & \(S \leftarrow S \cup\{u\}\) \\
\hline 7 & for each vertex \(v \in \operatorname{Adj}[u]\) \\
\hline 8 & do \(\operatorname{Relax}(u, v, w)\) \\
\hline
\end{tabular}

Loop invariant: \(\mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v})\) for all v in S .
- Initialization: Initially, S is empty, so trivially true.
- Termination: At end, \(Q\) is empty \(\rightarrow S=V \rightarrow d[v]=\delta(s, v)\) for all \(v\) in \(V\).
- Maintenance:
- Need to show that
\(-\mathrm{d}[\mathrm{u}]=\delta(\mathrm{s}, \mathrm{u})\) when u is added to S in each iteration.
- \(d[u]\) does not change once \(u\) is added to \(S\).

\section*{Correctness of Dijkstra's Algorithm: Upper Bound Property}
- Upper Bound Property:
1. \(d[v] \geq \delta(s, v) \forall v \in V\)
2. Once \(d[v]=\delta(s, v)\), it doesn't change
- Proof:

By induction.
Base Case: \(d[v] \geq \delta(s, v) \forall v \in V\) immediately after initialization, since
\[
\begin{aligned}
& d[s]=0=\delta(s, s) \\
& d[v]=\infty \forall v \neq s
\end{aligned}
\]

Inductive Step:
Suppose \(d[x] \geq \delta(s, x) \forall x \in V\)
Suppose we relax edge (\(u, v\)).
If \(d[v]\) changes, then \(d[v]=d[u]+w(u, v)\)
\[
\begin{aligned}
& \geq \delta(s, u)+w(u, v) \\
& \geq \delta(s, v)
\end{aligned}
\]

\section*{Correctness of Dijkstra's Algorithm}

Claim: When \(u\) is added to \(S, d[u]=\delta(s, u)\)
Proof by Contradiction: Let \(u\) be the first vertex added to \(S\) such that \(d[u] \neq \delta(s, u)\) when \(u\) is added.

Let \(y\) be first vertex in \(V-S\) on shortest path to \(u\)
Let \(x\) be the predecessor of \(y\) on the shortest path to \(u\)
Claim: \(d[y]=\delta(s, y)\) when \(u\) is added to \(S\).
Proof:
\(d[x]=\delta(s, x)\), since \(x \in S\).
\((x, y)\) was relaxed when \(x\) was added to \(S \rightarrow d[y]=\delta(s, x)+w(x, y)=\delta(s, y)\)

155

\section*{Correctness of Dijkstra's Algorithm}

Thus \(d[y]=\delta(s, y)\) when \(u\) is added to \(S\).
```

    DIJKSTRA(G,w,s)
    | DiJKStra $(G, w, s)$ |  |
| :---: | :---: |
| 1 | Initialize-Single-Source ( $G, s$ ) |
| 2 | $S \leftarrow \emptyset$ |
| 3 | $Q \leftarrow V[G]$ |
| 4 | while $Q \neq \emptyset$ |
| 5 | do $u \leftarrow$ Extract-Min $(Q)$ |
| 6 | $S \leftarrow S \cup\{u\}$ |
| 7 | for each vertex $v \in \operatorname{Adj}[u]$ |
| 8 | do $\operatorname{Relax}(u, v, w)$ |

```
 \(\rightarrow d[y]=\delta(s, y) \leq \delta(s, u) \leq d[u]\) (upper bound property)
But \(d[u] \leq d[y]\) when \(u\) added to \(S\)

Thus \(d[y]=\delta(s, y)=\delta(s, u)=d[u]!\)
Thus when \(u\) is added to \(S, d[u]=\delta(s, u)\)
Consequences:
There is a shortest path to \(u\) such that the predecessor of \(u \pi[u] \in S\) when \(u\) is added to \(S\). The path through \(y\) can only be a shortest path if \(w\left[p_{2}\right]=0\).

\section*{Correctness of Dijkstra's algorithm}
```

DIjKSTRA(G, w,s)
Initialize-Single-Source( }G,s
S\leftarrow\emptyset
Q}\leftarrowV[G
while Q\not=\emptyset
do }u\leftarrow\mathrm{ Extract-Min(Q)
S\leftarrowS\cup{u}
for each vertex v}\in\mp@code{Adj[u]
< "om}\operatorname{Relax}(u,v,w)= By the upper bound property, d[v]\geq\delta(s,v)
Thus once d[v]=\delta(s,v), it will not be changed.

```
- Loop invariant: d[v] = \(\delta(\mathrm{s}, \mathrm{v})\) for all vin S .
- Maintenance:
- Need to show that
\(-d[u]=\delta(s, u)\) when \(u\) is added to \(S\) in each iteration.
\(<=-\mathrm{d}[\mathrm{u}]\) does not change once u is added to S . -O ?```

