Graph Search Algorithms
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Graph

b Node ~ city or computer

Edge ~ road or data cable

C
Undirected or Directed

A surprisingly large number of computational
problems can be expressed as graph problems.
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Directed and Undirected Graphs

e D — Y

® ©® ®

(a) (b) (c)

(a) A directed graph 6= (V, E), where VV={1,2,3,4,5,6} and
E={(1,2),(2,2),(24),(25),(41),(45), (b4, (6,3).
The edge (2,2) is a self-loop.

(b) An undirected graph & = (V,E), where V= {1,2,3,4,5,6} and
E={(1,2), (1,5),(25), (3,6)}. The vertex 4 is isolated.

(c) The subgraph of the graph in part (a) induced by the vertex
set {1,2,3,6}.
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Trees

Tree Forest Graph with Cycle

A tree is a connected, acyclic, undirected graph.

A forest is a set of trees (not necessarily connected)



Running Time of Graph Algorithms

* Running time often a function of both |V| and |E]|.

« For convenience, drop the | . | in asymptotic notation,
e.g. O(V+E).



Representations: Undirected Graphs

L —pi2] 5]/
| V and 4|2l 5 3L
O—« s [(-ET=-5-217]
Adjacency List
Space complexity: 6V +E)

Time to find all neighbours of vertex u : &(degree(u))

Time to determine if (u,v)EE': O(degree(u))
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Representations: Directed Graphs

1 2 3 4 5 6

| 2] 4]/ 1lo1 01 0 0]
2 5|/ 2/0 0 0 0 1 0
3l -pe] 95/ 3o 00 0 1 1]
4| 2|/ 4/01 0000
51 =141/ S{0 001 0 0]
6| =16 /| 610 00 0 0 1]
Adjacency List Adjacency Matrix
Space complexity: OV +E) H(VZ)
Time to find all neighbours of vertex u : &(degree(u)) o)
Time to determine if (u,v)EE : f(degree(u)) (1)
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Breadth-First Search

* (Goal: To recover the shortest paths from a source node
S to all other reachable nodes v in a graph.

— The length of each path and the paths themselves are returned.

* Notes:
— There are an exponential number of possible paths

— This problem is harder for general graphs than trees because of
cycles!




Breadth-First Search

Input: Graph & = (V,E) (directed or undirected) and source vertex sV

Output:
d[v] = shortest path distance d(s,v) from s to v, VvEV.
7[v] = v such that (v,v) is last edge on a shortest path from s to v.

« |dea: send out search ‘wave’ from s.

« Keep track of progress by colouring vertices:
— Undiscovered vertices are coloured black
— Just discovered vertices (on the wavefront) are coloured red.

— Previously discovered vertices (behind wavefront) are coloured grey.
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Breadth-First Search Algorithm

BFS(G, s)

I
2
3
4
5
6
7
8
9
10
11

12

-

~

13
14
15
16
17
18

for each vertex u € V[G] — {s}
do color|u] < BLACK
dlu] < oo
mlu] < NIL
color[s] <— RED
dls] < 0
|s] < NIL
Q<9
ENQUEUE(Q, s)
while O # ¢
do u < DEQUEUE(Q)
for each v € Adj[u]
do if color[v] = BLACK
then color[v] < RED
dlv] < d[u] + 1
mlv] <« u
ENQUEUE(Q, v)
color[u] < GRAY

30

Q is a FIFO queue.

Each vertex assigned finite d
value at most once.

Q contains vertices with d
values {i, ..., I, i+1, ..., i+1}

d values assigned are
monotonically increasing over
time.



Breadth-First-Search is Greedy

 \ertices are handled:
— in order of their discovery (FIFO queue)

— Smallest d values first
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Correctness

Basic Steps:

o~

The shortest path to u & there 1s an edge
has length d from u to v

There 1s a path to v with length d+1.
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Correctness

 Vertices are discovered in order of their distance from
the source vertex s.

« When we discover v, how do we know there is not a
shorter path to v?

— Because if there was, we would already have discovered it!

o~

S
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Correctness

Input: Graph & = (V,E) (directed or undirected) and source vertex s€V/.

Output:

d[v] = distance from s to v, VvEV.

7[v] = v such that (v,v) is last edge on shortest path from s to v.
Two-step proof:

On exit:
1.d[v] =z o(s,v)VveEeV

2.d[v] # d(s,v)VveV
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Claim 1. d is never too small: d[v] = d(s,v)VveEV
Proof: There exists a path from s to v of length d[v].

By Induction:
Suppose it is true for all vertices thus far discovered (red and grey).

v is discovered from some adjacent vertex u being handled.

— d[v] =d[u] +1 .
> o(s,u)+1 v
> O(s,V) u

since each vertex v is assigned a d value exactly once,

it follows that on exit, d[v] = d(s,v)VvEV.
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Claim 1. d is never too small: d[v]=d(s,v)VveEV
Proof: There exists a path from s to v of length d[v].

BES(G, s)

1 for each vertex u € V[G] — {s}
do color[u] < BLACK
dlu] < oo

m|u] < NIL S
color[s] < RED u v
dls] < 0

w|s] < NIL
Q<0
ENQUEUE(Q, s)
while O #0 < <L [>: d[v] = §(s,v)V 'discovered' (red or grey) vEV
do u < DEQUEUE(Q)
for each v € Adj[u]
do if color|v] = BLACK
then color[v RED
15 d[v] «—d[u&zé(s,u)+1 > 0(s,v)
16 v <u
17 ENQUEUE(Q, v)
18 color[u] < GRAY

SO 00N W

[ S —
D —

t

= W
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Claim 2. d is never too big: d[v]=d(s,v)VveEV

Proof by contradiction:
Suppose one or more vertices receive a d value greater than 6.
Let v be the vertex with minimum 4(s,v) that receives such a d value.

Suppose that v is discovered and assigned this d value when vertex x is dequeued.

Let u be V's predecessor on a shortest path from s to v.

Th _ _
T sew)<dly] Sib - efi|=1

— J(s,v)-1<d[v]-1
— d[u] < d[x] \%
d[u] = d(s,v) -1

Recall: vertices are dequeued in increasing order of d value.

— U was dequeued before x.

—d[v]=d[u]+1=5(s,v) Contradiction!
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Correctness

Claim 1. d is never too small: d[v] = d(s,v)VveEV
Claim 2. d is never too big: d[v]=d(s,v)VveEV

= d iIs just right: d[v]=4d(s,v)VveEV
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Progress?

* On every iteration one vertex is processed (turns gray).

BES(G, s)
1 for each vertex u € V[G] — {s}

2 do color[u] < BLACK
3 dlu] <« oo

4 m|u] < NIL

S color[s] < RED

6 d[s] <0

7 m[s] < NIL

8 QO <«

9 ENQUEUE(Q, s)
10 while Q # ¢

11 do u < DEQUEUE(Q)

12 for each v € Adj[u]

13 do if color|v] = BLACK

14 then color[v] < RED
15 dlv] < d[u] +1
16 wlv] <« u

17 ENQUEUE(Q, v)
18 color[u] < GRAY +
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Running Time

Each vertex is enqueued at most once — O(V)

Each entry in the adjacency lists is scanned at most once — O(E)

BFS(G, s)

Thus run time is OV + E).

1 for each vertex u € V[G] — {s}
2 do color[u] « BLACK
3 dlu] < oo

4 mlu] < NIL

5

color[s] < RED
6 d[s] <0
7 m[s] < NIL
8 Q<4
9 ENQUEUE(Q,s)
10 while Q # ¢

11 do u < DEQUEUE(Q)

12 for each v € Adj[u]

13 do if color[v] = BLACK
14 then color|v] < RED
15 dlv] < dluj+ 1
16 w[v] <« u

17 ENQUEUE(Q, v)
18 color[u] « GRAY
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Optimal Substructure Property

 The shortest path problem has the optimal substructure property:

— Every subpath of a shortest path is a shortest path.

shortest path
A
~— —~
S u v
N\ i )
' A
shortest path shortest path

 The optimal substructure property
— is a hallmark of both greedy and dynamic programming algorithms.

— allows us to compute both shortest path distance and the shortest paths
themselves by storing only one d value and one predecessor value per

vertex.
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Recovering the Shortest Path

For each node v, store predecessor of v in m(v).

s = TUTT(T( v))))

(T v)))
T V))

Predecessor of v i1s mt(v) = u. (V)

42



Recovering the Shortest Path

PRINT-PATH(G, s, v)
Precondition: s and v are vertices of graph &
Postcondition: the vertices on the shortest path from s to v have been printed in order
if v=5 then

pint s S = TR(T(T( v))))
else if #[v] = NIL then

print "no path from" s "to" v "exists"

else
PRINT-PATH(&, s, x[v])
print v

TR V)))
T V))

7T(V)
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Colours are actually not required

BFS(V, E.5)

for cachu € V — {s}
do d[u] < o
d[s] < 0O
O <V
ENQUEUE(Q., s)
while O # V)
do u < DEQUEUE(Q)
for each v € Adj[u]
< doifdv] =00 >
then d[v] <« d[u] + 1
ENQUEUE(Q. v)
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Depth First Search (DFS)

e |dea:

— Continue searching “deeper” into the graph, until we get
stuck.

— If all the edges leaving v have been explored we “backtrack”
to the vertex from which v was discovered.

* Does not recover shortest paths, but can be useful for
extracting other properties of graph, e.g.,

— Topological sorts

— Detection of cycles
— Extraction of strongly connected components
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Depth-First Search

Input: Graph & = (V,E) (directed or undirected)

Output: 2 timestamps on each vertex:
l<dv]<Fflvl=2|V]

d[v] = discovery time.
f[v] = finishing time.

« Explore every edge, starting from different vertices if necessary.
« As soon as vertex discovered, explore from it.

« Keep track of progress by colouring vertices:
— Black: undiscovered vertices
— Red: discovered, but not finished (still exploring from it)

— Gray: finished (found everything reachable from it).
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Classification of Edges in DFS

I'ree edges are edges in the depth-first forest G_. Edge (u, v) is a tree edge if
v was first discovered by exploring edge (u, v).

Back edges are those edges (u, v) connecting a vertex u to an ancestor vin a
depth-first tree.

Forward edges are non-tree edges (u, v) connecting a vertex u to a
descendant v in a depth-first tree.

Cross edges are all other edges. They can go between vertices in the same
depth-first tree, as long as one vertex is not an ancestor of the other.

1l27

2/20 <6
C
3/1 9 1 16 l
- [17/1g]
C
X

C
[8119]

.4/'.

h

417

5/6
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Classification of Edges in DFS

1. Tree edges: Edge (u, v)is a tree edge if v was black when (u, v) traversed.
2. Back edges: (u, v)is a back edge if v was red when (u, v) traversed.

3. Forward edges: (u, v) is a forward edge if v was gray when (u, v) traversed
and d[v] > d[u].

4. Cross edges (u,v) is a cross edge if v was gray when (u, v) traversed and d

[v] < dfu].

Classifying edges can help to identify :

properties of the graph, e.g., a graph is o 5
acyclic iff DFS yields no back edges. A /‘\
® [22/23
\ : 11116 .l ©
C.\° 17118
N j12/15
- .4/. ‘
h ®  [1314
5/6 ./ m
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Undirected Graphs

* In a depth-first search of an undirected graph, every
edge is either a tree edge or a back edge.

« Why?
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Undirected Graphs

Suppose that (u,v) is a forward edge or a
cross edge in a DFS of an undirected graph.

(u,v) is a forward edge or a cross edge when v
is already handled (grey) when accessed from
u.

This means that all vertices reachable from v
have been explored.

Since we are currently handling u, u must be red.

Clearly v is reachable from u.

Since the graph is undirected, u must also be
reachable from v.

Thus u must already have been handled: u must
be grey.

Contradiction!
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DFS(G) Depth-First Search Algorithm
1 for each vertex u € V[G]
do color|u] < BLACK
mwlu] < NIL

time < 0

for each vertex u € V[G]

do if color[u] = BLACK
then DFS-VISIT (1)

N OB W

DFS-Visit (v)
Precondition: vertex v is undiscovered
Postcondition: all vertices reachable from v have been processed

1 color[u] < RED [>BLACK vertex u has just been discovered.
2 time < time +1

3 dlu] <« time

4 for each v € Adjlu] > Explore edge (u, v).

5 do if color[v] = BLACK

6 then 7[v] < u

7 DFS-ViIsIT(v)

8 color[u] < GRAY [>  GRAY u; it 1s finished.

9 flu] « time « time +1
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DFS(G) Depth-First Search Algorithm
1 for each vertex u € V[G] R
do color[u] < BLACK
mwlu] < NIL
time < 0 > total work = (9([/)
for each vertex u € V[G]
do if color[u] = BLACK

. J
then DFS-VISIT (u) Thus running time = OV + £)

N OB W

DFS-Visit (v)
Precondition: vertex v is undiscovered
Postcondition: all vertices reachable from v have been processed

| color[u] < RED >BLACK vertex u has just been discovered.

2 time < time +1

3 dlu] <« time

4 for each v € Adju] = Explore edge (u) v).

5 do if color[v] = BLACK

6 then Er[]v] . >total work = ;I Adjlv]| = 6(E)
7 DFS-VisiT(v)

8 color[u] < GRAY > GRAY u; it is finished.

9 flu] < time «— time +1
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Topological Sorting
(e.g., putting tasks in linear order)

An application of Depth-First Search



Linear Order

underwear socks
® ®
pantsg .3 shoes
=
undeer% ﬁ’% socks
pants " underwear
socks ) pants
shoes P, shoes
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Linear Order

underwear. .socks

pantsg shoes

Too many video games?
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Linear Order

d
/\ Precondition:
h

b A Directed Acyclic Graph

I I (DAG)
C 1
d I I Post Condition:

IJ Find one valid linear order
S k
Algorithm:
S *Find a terminal node (sink

f o ol Put 1t last in sequence. (¥)

Delete from graph & repeat %)

We can do better!
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Linear Order S
Alg: DFS oun

a Not Handled
/\ Stack
g
o

o o 6 O

Q.o =H
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Linear Order
Alg: DFS

°1 I
A
e 1 /Ik
f > \ol

Found
Not Handled
Stack

1

g
S
d

When node is popped off stack, insert at front of linearly-ordered “to do” list.

Linear Order:
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Linear Order
Found

Alg: DES Not Handled

a
/\ Stack

bI Ih
1 4
do

N/
/N

Linear Order:

1,f
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Linear Order
Found

Alg: DES Not Handled

a
/\ Stack

bI Ih
1 4
do

Q.0

Linear Order:

gLt
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Linear Order
Found

Alg: DES Not Handled

a
/\ Stack

bI Ih
1 4
do

Linear Order:

e,g,l,f
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Linear Order
Alg: DFS

bI Ih
1 4
do

Linear Order:

d,e,g,1,f

106

Found
Not Handled
Stack



Linear Order
Found

Alg: DES Not Handled

a
/\ Stack

bI Ih
1 4
do

Linear Order:

d,e,g,1,f
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Linear Order
Alg: DFS

AN\,

°1
“1
|
f

1

'

!
1

S
\1

Linear Order:
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Linear Order
Found

Alg: DES Not Handled

a
/\ Stack
h

Jo
| 1
f

'

S
\1

Linear Order:

j)k?dﬂeﬂgﬂlﬂf
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Linear Order
Found

Alg: DES Not Handled

a
/\ Stack
h

Jo
| 1
f

'

S
\1

Linear Order:

i?j 9k9d9eﬂg919f
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Linear Order
Found

Alg: DES Not Handled

a
/\ Stack
h

Jo
| 1
f

'

S
\1 .

Linear Order:

i?j 9k9d9eﬂg919f
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Linear Order

Alg: DFS
/\Ih
1 11.
>

1

Linear Order:

Cﬂiﬁj 9k9dﬂeﬂg9]‘9f
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Linear Order

Alg: DFS
/\Ih
1 11.
>

1

Linear Order:

b,C,i,j 9k9dﬂeﬂg9]‘9f
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Linear Order

Found
q Alg: DES Not Handled
/\ Stack
Ih
i
l l .
g
h
1 a

Linear Order:

b,C,i,j 9k9dﬂeﬂg9]‘9f

114



@QOU‘

Linear Order
Alg: DFS

/\h

2
l l.

>\

Linear Order:

h,b,C,i,j 9k9dﬂeﬂg9]‘9f
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Linear Order

. Alg: DFS
b 1/\ h
1i
o

Linear Order:

Found
Not Handled
Stack

a,h,b,c.,1,3,k,d,e,g,I,f Done!
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Linear Order

Proof: Consider each edge

*Case 1: u goes on stack first before v.

*Because of edge,

v goes on before u comes off
v comes off before u comes off
v goes after u in order. ©

Ue—>0 V

117
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Linear Order

Proof: Consider each edge

*Case 1: u goes on stack first before v.
*Case 2: v goes on stack first before u.

v comes off before u goes on.
v goes after u in order. ©

Ue—>0 V
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Linear Order

Found
Proof: Consider each edge Not Handled
*Case 1: u goes on stack first before v. Stack

*Case 2: v goes on stack first before u.
v comes off before u goes on.
Case 3: v goes on stack first before u.

u goes on before v comes off.
Panic: u goes after v in order. ®

*Cycle means linear order ( u>
. is impossible © v

The nodes 1n the stack form a path starting at s.

Ue—>0 V

V..U...
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Linear Order

Found
Alg: DES Not Handled

a
/ \ Stack
h

2
l l.

>\ Analysis: O(V+E)

Linear Order:

a,h,b,c.,1,3,k,d,e,g,I,f Done!
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Shortest Paths Revisited



Back to Shortest Path

BFS finds the shortest paths from a source node s to
every vertex v in the graph.

Here, the length of a path is simply the number of edges
on the path.

But what if edges have different ‘costs’?

o(s,v)=3 o(s,v)=12
7
LT LT
. Ehernd

122



Single-Source (Weighted) Shortest Paths



he Problem

« What is the shortest driving route from Toronto to Ottawa? (e.g.
MAPQuest, Google Maps)

e Input:
Directed Graph G = (V,E)
Edge weights w: E —°

k
Weight of path p =<v,,1,....v, > = 214/(1/,._1,1/,)
Shortest-path weight from v to v:

S(u.v) = min{w(p): u L — v} ifdapath v —=L —v,
' o0 otherwise.

Shortest path from v to v is any path p such that w(p) = 5(v,v).
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Example

(a) | (b)

Single-source shortest path search induces a search tree rooted at s.

This tree, and hence the paths themselves, are not necessarily unique.
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Shortest path variants
Single-source shortest-paths problem: — the
shortest path from s to each vertex v. (e.g. BFS)
Single-destination shortest-paths problem: Find a
shortest path to a given destination vertex t from

each vertex v.

Single-pair shortest-path problem: Find a shortest
path from u to v for given vertices u and v.

All-pairs shortest-paths problem: Find a shortest
path from u to v for every pair of vertices u and v.

126



Negative-weight edges

OK, as long as no negative-weight cycles are reachable
from the source.

— If we have a negative-weight cycle, we can just keep going
around it, and get w(s, v) = —« for all v on the cycle.

— But OK if the negative-weight cycle is not reachable from the
source.

— Some algorithms work only if there are no negative-weight edges
in the graph.




Optimal substructure

« Lemma: Any subpath of a shortest path is a shortest path

* Proof: Cut and paste.

Suppose this path p is a shortest path from v to v. ()
Then é(U,V) = W(p) = W(pux) + W(pxy) + W(pyv)-
Now suppose there exists a shorter path x — ijy — .

Then w(p,) <w(p,,).

Construct p":

Then w(p') =w(p,)+w(p,)+w(p,) < wip,)+w(p,)+w(p,) =w(p).

So p wasn't a shortest path after all!
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Cycles

« Shortest paths can’t contain cycles:
— Already ruled out negative-weight cycles.
— Positive-weight: we can get a shorter path by omitting the cycle.

— Zero-weight: no reason to use them - assume that our solutions
won't use them.
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Output of a single-source shortest-path algorithm

* For each vertex vin V:

— d[v] = &(s, V).
« Initially, d[v]=<.

» Reduce as algorithm progresses.
But always maintain d[v] = o(s, v).

« Call d[v] a shortest-path estimate.

— T1[v] = predecessor of v on a shortest path from s.

* |f no predecessor, 1r[v] = NIL.

* 17 induces a tree — shortest-path tree.
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Initialization

 All shortest-paths algorithms start with the
same initialization:

INIT-SINGLE-SOURCE(V, s)

foreachvinV

do d[v]«—<
'IT[V] «— NIL

d[s] — O
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Relaxing an edge

Can we improve shortest-path estimate for v by going through u
and taking (u,v)?

RELAX(u, v,w)

if d[v] > d[u] + w(u, v) then
d[v] <« d[u] + w(u, V)

V]« u
7 y
N 2 N\ =\ 2 ™
L5 ,}—)4\9 ) \/ 5 *ﬁ—>( 6 )
A ; u N - s/
: RELAX (14,v,w) : RELAX (1,v,w)
7 d y i : Vv
N 2 : Pm 2 P
WG >( 7} 5) —>(6)
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General single-source shortest-path strategy

1. Start by calling INIT-SINGLE-SOURCE
2. Relax Edges

Algorithms differ in the order in which edges are taken
and

how many times each edge is relaxed.
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Example: Single-source shortest paths in a directed
acyclic graph (DAG)

« Since graph is a DAG, we are guaranteed no
negative-weight cycles.
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Algorithm

DAG-SHORTEST-PATHS (G, w, §)
topologically sort the vertices of G
INITIALIZE-SINGLE-SOURCE(G, s)
for each vertex u, taken in topologically sorted order
do for each vertex v € Adj[u]
do RELAX (i, v, w)

R LTS R S

Time: OV + &)
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Example
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Example
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Example
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Example
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Example
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Example
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Correctness: Path relaxation property (Lemma 24.15)

Let p=<v,, v, ..., v, > beashortest path from s =v, to v,.
If we relax, inorder, (v,,v;), W,%), ..., (v.1.V,),

even intermixed with other relaxations,
then d[v,] = (s, v,).
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Correctness of DAG Shortest Path Algorithm

« Because we process vertices in topologically sorted
order, edges of any path are relaxed in order of
appearance in the path.

— —>Edges on any shortest path are relaxed in order.

— —>By path-relaxation property, correct.
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Example: Dijkstra’s algorithm

Applies to general weighted directed graph (may contain
cycles).

But weights must be non-negative.

Essentially a weighted version of BFS.

— Instead of a FIFO queue, uses a priority queue.

— Keys are shortest-path weights (d[v]).

Maintain 2 sets of vertices:

— S = vertices whose final shortest-path weights are determined.

— Q = priority queue = V-S.

144



Dijkstra’s algorithm

DIIKSTRA(G, w, §)

|l INITIALIZE-SINGLE-SOURCE(G, s)
2 S <0

3 0 « VI[G]

4  while Q # ¢

do u < EXTRACT-MIN(Q)
S «— S U {uj
for each vertex v € Adj[u]
do RELAX(u, v, w)

oC ~1 O Wn

Dijkstra’s algorithm can be viewed as greedy, since it always
chooses the “lightest” vertex inV - S fo add to S.
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Dijkstra’s algorithm: Analysis

Analysis:
Using minheap, queue operations takes O(logV) time

DIIKSTRA(G, w, §)

I INITIALIZE-SINGLE-SOURCE(G, 5) O(V)

2 S <10

3 0 <« VI[G]

4  while Q # ¢

5 do u < EXTRACT-MIN(Q)  O(logV)xO(V) iterations
6 S «— S U {uj

7 for each vertex v € Adju]

8 do RELAX (i, v, w) O(logV')xO(E) iterations

— Running Time is O(ElogV)

146



Key:

White <= Not Found
Example
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Correctness of Dijkstra’s algorithm

DIIKSTRA(G, w, §)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 S <0

3 0 <« VI[G]

4 while Q # 0

5  dou <« EXTRACT-MIN(Q)
6 S «— S U {u)
7
8

for each vertex v € Adj[u]
do RELAX (u, v, w)

— Loop invariant: d[v] = &(s, v) for all vin S.
— Initialization: Initially, S is empty, so trivially true.
— Termination: Atend, Q is empty 2S =V - d[v] = (s, v) forall vin V.

— Maintenance:

* Need to show that
— d[u] = &(s, u) when u is added to S in each iteration.

— d[u] does not change once u is added to S.
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Correctness of Dijkstra’s Algorithm: Upper Bound Property

 Upper Bound Property:

1. d[v]= o(s,v)VveEV
2. Once d[v] = d(s,v), it doesn't change

 Proof:

By induction.

Base Case: d[v] = d(s,v)Vv €V immediately after initialization, since
d[s] =0 = d(s,S)
d[v] = Vv = s

Inductive Step:
Suppose d[x] = d(s,x)VxeV
Suppose we relax edge (u,v).

If d[v] changes, then d[v] = d[u] + w(u,V)
> o(s,u)+w(u,v)

> 0(S,v)
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Correctness of Dijkstra’s Algorithm

Claim: When u is added to S, d[u] = d(s,u)

Proof by Contradiction: Let u be the first vertex added to S
such that d[u] = J6(s,u) when u is added.

Let y be first vertex in V — S on shortest path to u
Let x be the predecessor of y on the shortest path to u

Claim: d[y] = 6(s,y) when u is added to S.

Proof:

d[x] = 6(s,x), since xES.

(x,y) was relaxed when x was added to S — d[y] = d(s,x)+w(x,y) =d(s,y)
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Correctness of Dijkstra’s Algorithm

Thus d[y] = d(s,y) when u is added to S.
DUKSTRA(G, w, §)

— d[y] = é(s’y) < 5(S,U) < d[u] (upper bound property) é lNITI.»'-V\jLIZE-SINGLE-S()URCE(G, s)
S« ¢

But d[u] = d[y] when u added to S 3 Q0 <« VI[G]
C N 4 whieo s

Thus d[y] = d(s,y) = d(s,u) = d[u]! do ‘ EETﬁCT—MIN(Q)
<. U

for each vertex v € Adj[u]
do RELAX(u, v, w)

o~ O W

Thus when u is added to S, d[u] = d(s,u)

Consequences:
There is a shortest path to u such that the predecessor of u #z[u]€S when u is added to S.

The path through y can only be a shortest path if w[p,] = 0.

Handled
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Correctness of Dijkstra’s algorithm

DIIKSTRA(G, w, §)

]l INITIALIZE-SINGLE-SOURCE(G, s)

2 S <0

3 0 <« V[G]

4  while Q # ¢

5 do u < EXTRACT-MIN(Q)

> R _ Relax(u,v,w) can only decrease d[v]

7 for each vertex v € Adju]

8 < :d'o'RELAx(u., U, wz = By the upper bound property, d[v] = d(s,v).

Thus once d[v] = d(s,V), it will not be changed.
* Loop invariant: d[v] = 0(s, v) forall vin S.
— Maintenance:

* Need to show that

z ——-::I[u] does not change once u is added to S. - : R) ?

-~
~--_—————————__
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