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Graph Search Algorithms 
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Graph 

a 

c 

b Node ~ city or computer 

Edge ~ road or data cable 

Undirected or Directed 

A surprisingly large number of computational 
problems can be expressed as graph problems.  
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Directed and Undirected Graphs 

(c) The subgraph of the graph in part (a) induced by the vertex 
set {1,2,3,6}. 

(a)  A directed graph G = (V, E), where V = {1,2,3,4,5,6} and  
 E = {(1,2), (2,2), (2,4), (2,5), (4,1), (4,5), (5,4), (6,3)}.  
 The edge (2,2) is a self-loop. 

(b) An undirected graph G = (V,E), where V = {1,2,3,4,5,6} and  
 E = {(1,2), (1,5), (2,5), (3,6)}. The vertex 4 is isolated.  



4 

Trees 

Tree Forest Graph with Cycle 

A tree is a connected, acyclic, undirected graph. 

A forest is a set of trees (not necessarily connected) 
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Running Time of Graph Algorithms 

•  Running time often a function of both |V| and |E|. 

•  For convenience, drop the | . | in asymptotic notation, 
e.g. O(V+E). 
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Representations:  Undirected Graphs 

Adjacency List Adjacency Matrix 

Space complexity:

Time to find all neighbours of vertex :u

Time to determine if ( , ) :  ∈u v E

( )θ +V E

(degree( ))θ u

(degree( ))θ u

2( )θ V

( )θ V

(1)θ
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Representations:  Directed Graphs 

Adjacency List Adjacency Matrix 

Space complexity:

Time to find all neighbours of vertex :u

Time to determine if ( , ) :  ∈u v E

( )θ +V E

(degree( ))θ u

(degree( ))θ u

2( )θ V

( )θ V

(1)θ
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Breadth-First Search 

•  Goal: To recover the shortest paths from a source node 
s to all other reachable nodes v in a graph. 
–  The length of each path and the paths themselves are returned. 

•  Notes:   
–  There are an exponential number of possible paths 

–  This problem is harder for general graphs than trees because of 
cycles! 

s 

? 
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Breadth-First Search 

•  Idea:  send out search ‘wave’ from s. 

•  Keep track of progress by colouring vertices: 
–  Undiscovered vertices are coloured black 

–  Just discovered vertices (on the wavefront) are coloured red. 

–  Previously discovered vertices (behind wavefront) are coloured grey. 

Graph ( , ) (directed or undirected) and sourceInput:  vertex   .G V E s V= ∈

[ ]  shortest path distance ( , ) from  to ,  .
  [ ]  such that ( , ) is las

Outpu

t edg

t:  
 

e on  shortest path from a  to
 

 .
d v s v s v v V

v u u v s v
δ

π

= ∀ ∈

=
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BFS 
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c 

h 

k 

f 
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l 

m 

j 
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g 
d 

Found 
Not Handled 

Queue 

First-In First-Out (FIFO) queue 
stores ‘just discovered’ vertices 
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Breadth-First Search Algorithm 

•  Q is a FIFO queue. 

•  Each vertex assigned finite d 
value at most once. 

•  Q contains vertices with d 
values {i, …, i, i+1, …, i+1} 

•  d values assigned are 
monotonically increasing over 
time. 

BLACK 

RED 

BLACK 
RED 

GRAY 
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Breadth-First-Search is Greedy 

•  Vertices are handled: 
–   in order of their discovery (FIFO queue) 

–  Smallest d values first 
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Basic Steps: 

s 
u 

The shortest path to u 
has length d 

v 

& there is an edge  
from u to v 

There is a path to v with length d+1. 

Correctness 

d 
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Correctness 

•  Vertices are discovered in order of their distance from 
the source vertex s. 

•  When we discover v, how do we know there is not a 
shorter path to v? 
–  Because if there was, we would already have discovered it! 

s 
u v d 
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Correctness 

Graph ( , ) (directed or undirected) and sourceInput:  vertex   .G V E s V= ∈

[ ]  distance from  to ,  .
  [ ]  such that ( , ) is last edge on s

Output:  

hortest path from  to .
  d v s v v V

v u u v s vπ

= ∀ ∈

=

1. [ ] ( , )d v s v v Vδ≥ ∀ ∈

2. [ ] ( , )  d v s v v Vδ> ∀ ∈/

Two-step proof: 

On exit: 
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δ≥ ∀ ∈Claim 1.  is never too small:  [ ] ( , )d d v s v v V
 There exists a path from  to  of length [ ].Proof: v vs d

By Induction:
Suppose it is true for all vertices thus far discovered (  an grre  d d ey).

 is discovered from some adjacent vertex  being handled.uv

→ = +[ ] [ ] 1d v d u
δ≥ +( , ) 1us
δ≥ ( , )s v u v 

s 

since each vertex  is assigned a  value exactly once, 
it follows that o [ ]n exit, ( ., )d v s v

v
v V
d

δ≥ ∀ ∈
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<LI>: [ ] ( , )  'disco rvered' (  o gr )eyred   d v s v v Vδ← ≥ ∀ ∈

( , ) 1s uδ≥ + ( , )s vδ≥

δ≥ ∀ ∈Claim 1.  is never too small:  [ ] ( , )d d v s v v V

BLACK 

RED 

BLACK 
RED 

GRAY 

 There exists a path from  to  of length [ ].Proof: v vs d

s 
u v 
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δ≤ ∀ ∈Claim 2.   is never too big:  [ ] ( , )  d d v s v v V
Proof by contradiction:

δSuppose one or more vertices receive a  value greater than .d

δLet  be the vertex with minimum ( , ) that receives such a  value.s dv v

Let  be 's predecessor on a shortest path from  to .u sv v

s 
u v 

Suppose that  is discovered and assigned this d value when vertex  is dequeued.v x

= −[ ] [ ] 1d x d v

δ= −[ ] ( , ) 1d s vu

δ <( , ) [ ]vs d v

  vertices are dequeued in increasing order of Reca  v .ll: alued
→  u was dequeued before x.

δ→ = + =[ ] [ ] 1 ( , )dvd u s v

x δ→ − < −( , ) 1 [ ] 1v d vs

→ <[ ] [ ]d u d x

Then

Contradiction! 
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Correctness 

δ≥ ∀ ∈Claim 1.  is never too small:  [ ] ( , )d d v s v v V

δ≤ ∀ ∈Claim 2.   is never too big:  [ ] ( , )  d d v s v v V

δ⇒ = ∀ ∈ is just right:  [ ] ( , )  d d v s v v V
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Progress? 

•  On every iteration one vertex is processed (turns gray). 

BLACK 

RED 

BLACK 
RED 

GRAY 
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Running Time 

Each vertex is enqueued at most once ( )O V→

Each entry in the adjacency lists is scanned at most once O(E)→

Thus run time is ( ).O V E+
BLACK 

RED 

RED 

GRAY 

BLACK 
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•  The shortest path problem has the optimal substructure property: 
–  Every subpath of a shortest path is a shortest path. 

•  The optimal substructure property  
–  is a hallmark of both greedy and dynamic programming algorithms. 

–  allows us to compute both shortest path distance and the shortest paths 
themselves by storing only one d value and one predecessor value per 
vertex. 

Optimal Substructure Property 

u v s 

shortest path 

shortest path shortest path 
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Recovering the Shortest Path 
For each node v, store predecessor of v in π(v). 

s 
u v 

Predecessor of v is 

π(v) 

π(v) = u. 
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Recovering the Shortest Path 

Precondition:   and  are vertices of graph 
Postcondition: the vertices on the shortest path from  to  have been prin

 

P

if then

RINT-PATH( ,  ,  )

pr

 
print

ted in o

 
else 

int
if 

rd

then [ ] I  
"

e

L
 

r

N

s v G
s v

s

v

v

s
s

G

v

π

=

=

else
no path from"  "to"  "exists"

PRINT-PATH( ,  ,  [ ])
print 

 
s v

G s v
v

π
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Colours are actually not required 
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Depth First Search (DFS) 

•  Idea: 
–  Continue searching “deeper” into the graph, until we get 

stuck.  

–  If all the edges leaving v have been explored we “backtrack” 
to the vertex from which v  was discovered.  

•  Does not recover shortest paths, but can be useful for 
extracting other properties of graph, e.g., 
–  Topological sorts 

–  Detection of cycles 
–  Extraction of strongly connected components 
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Depth-First Search 

•  Explore every edge, starting from different vertices if necessary. 

•  As soon as vertex discovered, explore from it. 

•  Keep track of progress by colouring vertices: 
–  Black:  undiscovered vertices 

–  Red:  discovered, but not finished (still exploring from it) 

–  Gray: finished (found everything reachable from it). 

Graph ( , ) (directed or In undirectep : )t du   G V E=

2 timestamps on each vertex:
  [ ] discovery time.
  [ ] finishing tim

Output

.

:  

e
d v
f v

=

=
1 [ ] [ ] 2| |d v f v V≤ < ≤
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Classification of Edges in DFS 
1.  Tree edges are edges in the depth-first forest Gπ. Edge (u, v) is a tree edge if 

v  was first discovered by exploring edge (u, v). 

2.  Back edges are those edges (u, v) connecting a vertex u to an ancestor v in a 
depth-first tree. 

3.  Forward edges are non-tree edges (u, v) connecting a vertex u to a 
descendant v in a depth-first tree. 

4.  Cross edges are all other edges. They can go between vertices in the same 
depth-first tree, as long as one vertex is not an ancestor of the other. 
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Classification of Edges in DFS 
1.  Tree edges:  Edge (u, v) is a tree edge if v was black when (u, v) traversed. 

2.  Back edges: (u, v) is a back edge if v was red when (u, v) traversed. 

3.  Forward edges: (u, v) is a forward edge if v was gray when (u, v) traversed 
and d[v] > d[u]. 

4.  Cross edges (u,v) is a cross edge if v was gray when (u, v) traversed and d
[v] < d[u]. 
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Classifying edges can help to identify  
properties of the graph, e.g., a graph is  
acyclic iff DFS yields no back edges. 
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Undirected Graphs 

•  In a depth-first search of an undirected graph, every 
edge is either a tree edge or a back edge. 

•  Why? 



94 

Undirected Graphs 

•  Suppose that (u,v) is a forward edge or a 
cross edge in a DFS of an undirected graph. 

•  (u,v) is a forward edge or a cross edge when v 
is already handled (grey) when accessed from 
u. 

•  This means that all vertices reachable from v 
have been explored.  

•  Since we are currently handling u, u must be red. 

•  Clearly v is reachable from u. 

•  Since the graph is undirected, u must also be 
reachable from v. 

•  Thus u must already have been handled:  u must 
be grey. 

•  Contradiction! 

u 

v 
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Depth-First Search Algorithm 

RED  

BLACK  

GRAY         GRAY  

BLACK 

Precondition:  vertex  is undiscovered
Postcondition: all vertices reachable from  have 

DFS-Vi

been p

si

ro

t 

s

( )

ces ed
u

u

u

BLACK 

BLACK 

DFS(G)    



96 

Depth-First Search Algorithm 
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Topological Sorting  
(e.g., putting tasks in linear order) 

An application of Depth-First Search 
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Linear Order 
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Linear Order 

underwear 

pants 

socks 

shoes 

Too many video games? 
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Linear Order 
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c i 
d j 
e k 

f l 

g 

Precondition:  
   A Directed Acyclic Graph 
     (DAG) 

Post Condition: 
    Find one valid linear order 

Algorithm:  
• Find a terminal node (sink). 
• Put it last in sequence. 
• Delete from graph & repeat 
 

…..  l 

Θ(V) 
 Θ(V2) 

We can do better! 



101 

Linear Order 
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Linear Order 
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…..  f 
Linear Order: 
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Linear Order 
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Linear Order 
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Linear Order 
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Linear Order 
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Linear Order 
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Linear Order 
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Linear Order 
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Linear Order 
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Linear Order 
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Linear Order 
Found 

Not Handled 
Stack  

Proof: 
• Case 1: u goes on stack first before v. 

• Because of edge, 
    v goes on before u comes off 
• v comes off before u comes off 
• v goes after u in order.  

u v 
v… u… 

Consider each edge 

v 

…
 

u 

…
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Linear Order 
Found 

Not Handled 
Stack  

Proof: 
• Case 1: u goes on stack first before v. 
• Case 2: v goes on stack first before u. 
             v comes off before u goes on. 

• v goes after u in order.  

u v 
v… u… 

Consider each edge 

u 

…
 v 

…
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Linear Order 
Found 

Not Handled 
Stack  

Proof: 
• Case 1: u goes on stack first before v. 
• Case 2: v goes on stack first before u. 
             v comes off before u goes on. 
Case 3: v goes on stack first before u. 
             u goes on before v comes off. 

• Panic: u goes after v in order.  
• Cycle means linear order  
     is impossible  

u v 
u… v… 

Consider each edge 

u 

…
 

v 

…
 

The nodes in the stack form a path starting at s. 
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Linear Order 
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ΘAnalysis:  (V+E)



Shortest Paths Revisited 
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3 

Back to Shortest Path 

•  BFS finds the shortest paths from a source node s to 
every vertex v in the graph. 

•  Here, the length of a path is simply the number of edges 
on the path. 

•  But what if edges have different ‘costs’?  

s 

v 

( , ) 3s vδ = ( , ) 12s vδ =

2 s 

v 
2 

5 1 
7 



Single-Source (Weighted) Shortest Paths 
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The Problem 

•  What is the shortest driving route from Toronto to Ottawa? (e.g. 
MAPQuest, Google Maps) 

•  Input: 

0 1 1
1

Weight of path , ,...,  ( , )
k

i ik
i

p v v v w v v−
=

=< > =∑
Shortest-path weight from  to :u v

  min{ ( ) :  } if  a path ,( , )  otherwise.

p
w p u v u vu vδ

⎧⎪ → → ∃ → →= ⎨
∞⎪⎩

L L

Shortest path from  to  is any path  such that ( ) ( , ).u v p w p u vδ=

Directed Graph ( , )G V E=

Edge weights :w E→ °
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Example 

Single-source shortest path search induces a search tree rooted at s. 

This tree, and hence the paths themselves, are not necessarily unique. 
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Shortest path variants 

•  Single-source shortest-paths problem: – the 
shortest path from s to each vertex v. (e.g. BFS) 

•  Single-destination shortest-paths problem: Find a 
shortest path to a given destination vertex t from 
each vertex v.  

•  Single-pair shortest-path problem: Find a shortest 
path from u to v for given vertices u and v.  

•  All-pairs shortest-paths problem: Find a shortest 
path from u to v for every pair of vertices u and v.  
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Negative-weight edges 

•  OK, as long as no negative-weight cycles are reachable 
from the source. 
–  If we have a negative-weight cycle, we can just keep going 

around it, and get w(s, v) = −∞ for all v on the cycle. 

–  But OK if the negative-weight cycle is not reachable from the 
source. 

–  Some algorithms work only if there are no negative-weight edges 
in the graph. 



128 

Optimal substructure 

•  Lemma:  Any subpath of a shortest path is a shortest path 

•  Proof:  Cut and paste. 

Now suppose there exists a shorter path .
xyp

x y
ʹ′

→ →L

Then ( ) ( ).xy xyw p w pʹ′ <

Construct p :ʹ′

Then ( ) ( ) ( ) ( )ux xy yvw p w p w p w pʹ′ ʹ′= + +  ( ) ( ) ( )ux xy yvw p w p w p< + + ( ).w p=

So p wasn't a shortest path after all!

Suppose this path  is a shortest path from  to .p u v

Then ( , ) ( ) ( ) ( ) ( ).ux xy yvu v w p w p w p w pδ = = + +
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Cycles 

•  Shortest paths can’t contain cycles: 

–  Already ruled out negative-weight cycles. 

–  Positive-weight:  we can get a shorter path by omitting the cycle. 

–  Zero-weight: no reason to use them  assume that our solutions 
won’t use them. 
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Output of a single-source shortest-path algorithm 

•  For each vertex v in V: 

–  d[v] = δ(s, v). 

•  Initially, d[v]=∞. 

•  Reduce as algorithm progresses.  
 But always maintain d[v] ≥ δ(s, v). 

•  Call d[v] a shortest-path estimate. 

–  π[v] = predecessor of v on a shortest path from s. 

•  If no predecessor, π[v] = NIL. 

•  π induces a tree — shortest-path tree. 
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Initialization 

•  All shortest-paths algorithms start with the 
same initialization: 

INIT-SINGLE-SOURCE(V, s) 

for each v in V 
do d[v]←∞ 

π[v] ← NIL 

d[s] ← 0 
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Relaxing an edge 

•  Can we improve shortest-path estimate for v by going through u 
and taking (u,v)? 

RELAX(u, v,w) 

 if d[v] > d[u] + w(u, v) then  

  d[v] ← d[u] + w(u, v) 

  π[v]← u 
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General single-source shortest-path strategy 

1.  Start by calling INIT-SINGLE-SOURCE 

2.  Relax Edges 

Algorithms differ in the order in which edges are taken 
and 

how many times each edge is relaxed. 
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Example:  Single-source shortest paths in a directed 
acyclic graph (DAG) 

•  Since graph is a DAG, we are guaranteed no 
negative-weight cycles. 
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Algorithm 

Time: ( )V EΘ +
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Example 
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Example 
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Example 



139 

Example 
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Example 
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Example 
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Correctness:  Path relaxation property (Lemma 24.15) 

0 1 0Let ,  ,  . . . ,   be a shortest path from   .k kp v v v s v to v=< > =

0 1 1 2 -1If we relax, in order, ( , ),  ( , ),  . . . ,  ( , ), k kv v v v v v

even intermixed with other relaxations,
then [ ]  ( ,  ).k kd v s vδ=
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Correctness of DAG Shortest Path Algorithm 

•  Because we process vertices in topologically sorted 
order, edges of any path are relaxed in order of 
appearance in the path. 

–  Edges on any shortest path are relaxed in order. 

–  By path-relaxation property, correct. 
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Example:  Dijkstra’s algorithm 

•  Applies to general weighted directed graph (may contain 
cycles). 

•  But weights must be non-negative. 

•  Essentially a weighted version of BFS. 
–  Instead of a FIFO queue, uses a priority queue. 

–  Keys are shortest-path weights (d[v]). 

•  Maintain 2 sets of vertices: 
–  S = vertices whose final shortest-path weights are determined. 

–  Q = priority queue = V-S. 
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Dijkstra’s algorithm 

  Dijkstra’s algorithm can be viewed as greedy, since it always 
chooses the “lightest” vertex in V − S to add to S. 
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Dijkstra’s algorithm:  Analysis 

  Analysis: 
  Using minheap, queue operations takes O(logV) time 

( )O V

(log )O V ( ) iterationsO V×

(log )O V ( ) iterationsO E×

Running Time is ( log )O E V→
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Example 
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Example 
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Example 
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Correctness of Dijkstra’s algorithm 

•  Loop invariant: d[v] = δ(s, v) for all v in S. 
–  Initialization: Initially, S is empty, so trivially true. 

–  Termination: At end, Q is empty S = V  d[v] = δ(s, v) for all v in V. 

–  Maintenance:  
•  Need to show that  

–  d[u] = δ(s, u) when u is added to S in each iteration. 
–  d[u] does not change once u is added to S. 
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Correctness of Dijkstra’s Algorithm:  Upper Bound Property 

•  Upper Bound Property: 
1. [ ] ( , )d v s v v Vδ≥ ∀ ∈

•  Proof: 
By induction.

 [ ] ( , )  immediately after initialization, since
[ ] 0 ( ,

Base Cas :

[ ]

e
)

d v s v v V
d s s s
d v v s

δ

δ

≥ ∀ ∈

= =

= ∞∀ ≠

δ≥ ∀ ∈Suppose
Inductive Step:

 [ ] ( , )d x s x x V

( , ) ( , )s u w u vδ≥ +

( , )s vδ≥

If [ ] changes, then [ ] [ ] ( , )d v d v d u w u v= +

Suppose we relax edge ( , ).u v

2. Once [ ] ( , ),  it doesn't changed v s vδ=
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Correctness of Dijkstra’s Algorithm 

When  is added to Clai , [ ] (m  ): ,u S d u s uδ=

Let  be first vertex in  on shortest path to  y V S u−

Let  be the predecessor of  on the shortest path to x y u

 [ ] ( , ) when  is added toCl :  .aim d y s y u Sδ=

Proof:
[ ] ( , ),  since x .d x s x Sδ= ∈

( , ) was relaxed when  was added to x y x S [ ] ( , ) ( , ) ( , )d y s x w x y s yδ δ→ = + =

Handled 

Let  be the first vertex added to  
such tha
Proof by Con

t [ ] ( , ) when  is added.
tradiction: u S

d u s u uδ≠



156 

Correctness of Dijkstra’s Algorithm 
Thus [ ] ( , ) when  is added to .d y s y u Sδ=

[ ] ( , ) ( , ) [ ] (upper bound property)d y s y s u d uδ δ→ = ≤ ≤

But [ ] [ ] when  added to d u d y u S≤

Thus [ ] ( , ) ( , ) [ ]!d y s y s u d uδ δ= = =

Thus when  is added to , [ ] ( , )u S d u s uδ=

There is a shortest path to  such that the predecessor of  [ ]
Conse

 whe
quences

n  is added to .
:

u u u S u Sπ ∈

π [ ]u

=2The path through  can only be a shortest path if [ ] 0.y w p

Handled 
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Correctness of Dijkstra’s algorithm 

•  Loop invariant: d[v] = δ(s, v) for all v in S. 
–  Maintenance:  

•  Need to show that  
–  d[u] = δ(s, u) when u is added to S in each iteration. 

–  d[u] does not change once u is added to S. 

δ=Thus once [ ] ( , ), it will not be changed.d v s v

 can only decRelax(u rease ],v,w) [ .d v
δ≥upper bound prBy the , operty [ ] ( , ).d v s v

 
? 


