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Network Flows 
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Types of Networks 

•  Internet 

•  Telephone 

•  Cell 

•  Highways 

•  Rail 

•  Electrical Power 

•  Water 

•  Sewer 

•  Gas 

•  … 
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Maximum Flow Problem 

•  How can we maximize the flow in a network from a source or set of 
sources to a destination or set of destinations? 

•  The problem reportedly rose to prominence in relation to the rail 
networks of the Soviet Union, during the 1950's. The US wanted to 
know how quickly the Soviet Union could get supplies through its rail 
network to its satellite states in Eastern Europe. 

•  In addition, the US wanted to know which rails it could destroy most 
easily to cut off the satellite states from the rest of the Soviet Union. 
It turned out that these two problems were closely related, and that 
solving the max flow problem also solves the min cut problem of 
figuring out the cheapest way to cut off the Soviet Union from its 
satellites. 

Source:  lbackstrom, The Importance of Algorithms, at www.topcoder.com  
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• Instance:  

• A Network is a directed graph G  

• Edges represent pipes that carry flow 

• Each edge (u,v) has a maximum capacity c(u,v)  

• A source node s in which flow arrives 

• A sink node t out which flow leaves 

Goal:  
   Max Flow 

Network Flow 

Figure courtesy of J. Edmonds 



6 

The Problem 
•  Use a graph to model material that flows through conduits. 

•  Each edge represents one conduit, and has a capacity, which is 
an upper bound on the flow rate, in units/time. 

•  Can think of edges as pipes of different sizes.  

•  Want to compute max rate that we can ship material from a 
designated source to a designated sink. 
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What is a Flow Network? 

•  Each edge (u,v) has a nonnegative capacity c(u,v).  

•  If (u,v) is not in E, assume c(u,v)=0. 

•  We have a source s, and a sink t.  

•  Assume that every vertex v in V is on some path from s to t. 

•  e.g., c(s,v1)=16; c(v1,s)=0; c(v2,v3)=0 
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What is a Flow in a Network? 

•  For each edge (u,v), the flow f(u,v) is a real-valued 
function that must satisfy 3 conditions: 

    Notes: 
  The skew symmetry condition implies that f(u,u)=0. 
  We show only the positive flows in the flow network. 

Capacity constraint: , ,  ( , ) ( , ) u v V f u v c u v∀ ∈ ≤

Skew symmetry: , ,  ( , ) ( ,  )  u v V f u v f v u∀ ∈ = −

Flow conservation { , },  ( , ) 0:   
v V

u V s t f u v
∈

∀ ∈ − =∑
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Example of a Flow: 

•  f(v2, v1) = 1, c(v2, v1) = 4. 

•  f(v1, v2) = -1, c(v1, v2) = 10. 

•  f(v3, s) + f(v3, v1) + f(v3, v2) + f(v3, v4) + f(v3, t) = 

         0    +    (-12)   +       4   +      (-7)    +    15     =  0 

flow 
capacity 

capacity 
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The Value of a flow  

•  The value of a flow is given by  

∑∑
∈∈

==
VvVv

tvfvsff ),(),(||

  This is the total flow leaving s  = the total flow arriving in t.  
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Example: 

|f| = f(s, v1) + f(s, v2) + f(s, v3) + f(s, v4) + f(s, t) =  

             11    +     8     +     0      +      0    +     0     = 19  

 

|f|= f(s, t) +  f(v1, t) + f(v2, t) + f(v3, t) +  f(v4, t) = 

           0     +     0      +     0     +     15    +       4     = 19  
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A flow in a network  

•  We assume that there is only flow in one direction at a time. 

•  Sending 7 trucks from Edmonton to Calgary and 3 trucks from 
Calgary to Edmonton has the same net effect as sending 4 
trucks from Edmonton to Calgary.  
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Multiple Sources Network 
•  We have several sources and several targets.  

•  Want to maximize the total flow from all sources to all targets.  

•  Reduce to max-flow by creating a supersource and a supersink: 
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Residual Networks 

•  The residual capacity of an edge (u,v) in a network with a flow f is 
given by:  

),(),(),( vufvucvuc f −=

•  The residual network of a graph G induced by a flow f is the graph 
including only the edges with positive residual capacity, i.e., 

= ( , ), wheref fG V E = ∈ × >{( , ) : ( , ) 0}f fE u v V V c u v
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Example of Residual Network 

Flow Network: 

Residual Network: 
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Augmenting Paths 

•  An augmenting path p is a simple path from s to t on 
the residual network.  

•  We can put more flow from s to t through p.  

•  We call the maximum capacity by which we can 
increase the flow on p the residual capacity of p. 

}on  is ),( :),(min{)( pvuvucpc ff =
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Augmenting Paths  

Network: 

Residual 
Network: 

Augmenting 
path The residual capacity of this augmenting path is 4. 
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Computing Max Flow 

•  Classic Method:   
–  Identify augmenting path 

–  Increase flow along that path 

–  Repeat 
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Ford-Fulkerson Method 
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Example 

Flow(1) Residual(1) 

Flow(2) Residual(2) 

No more augmenting paths  max flow attained. 

Cut 
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Cuts of Flow Networks 

= −

∈ ∈

A ( , ) of a flow network is a partition cut of  into  and 
such that  and .

S T V S T V S
s S t T
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The Net Flow through a Cut (S,T) 

•  f(S,T) = 12 – 4 + 11 = 19 

∑
∈∈

=
TvSu

vufTSf
,

),(),(
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The Capacity of a Cut (S,T) 

•  c(S,T)= 12+ 0 + 14 = 26 

∑
∈∈

=
TvSu

vucTSc
,

),(),(
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Augmenting Paths – example 
•  Capacity of the cut  

 = maximum possible flow through the cut  
 = 12 + 7 + 4 = 23 

•  The network has a capacity of at most 23.  

•  In this case, the network does have a capacity of 23, because this    
is a minimum cut. 

Flow(2) 

cut 
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Net Flow of a Network 

•  The net flow across any cut is the same and equal to 
the flow of the network |f|. 
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Bounding the Network Flow 

•  The value of any flow f in a flow network G is 
bounded from above by the capacity of any cut of G.  
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Max-Flow Min-Cut Theorem 

•  If f is a flow in a flow network G=(V,E), with source s 
and sink t, then the following conditions are equivalent: 
1.  f is a maximum flow in G. 

2.  The residual network Gf contains no augmented paths.   

3.  |f| = c(S,T) for some cut (S,T) (a min-cut). 
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The Basic Ford-Fulkerson Algorithm  
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Example 

Original Network 

augmenting path 

4 Resulting Flow =  

Flow Network 
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Example 

Resulting Flow =  4 Flow Network 

Residual Network 

Flow Network Resulting Flow =  11 

augmenting path 
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Example 

Resulting Flow =  11 Flow Network 

Residual Network 

Flow Network Resulting Flow =  19 

augmenting path 
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Example 

Resulting Flow =  19 Flow Network 

Residual Network 

Flow Network Resulting Flow =  23 

augmenting path 
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Residual Network 

Example 

Resulting 
Flow =  23 

No augmenting path:  
Maxflow=23 
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Analysis  

O(E) 

O(E) 

? 
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Analysis 

•  If capacities are all integer, then each augmenting 
path raises |f| by ≥ 1. 

•  If max flow is f*, then need ≤ |f*| iterations  time is 
O(E|f*|). 

•  Note that this running time is not polynomial in input 
size. It depends on |f*|, which is not a function of |V| 
or |E|. 

•  If capacities are rational, can scale them to integers. 

•  If irrational, FORD-FULKERSON might never 
terminate! 
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The Basic Ford-Fulkerson Algorithm 

•  With time O ( E |f*|),  the algorithm is not polynomial.  

•  This problem is real: Ford-Fulkerson may perform 
very badly if we are unlucky: 

|f*|=2,000,000 
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Run Ford-Fulkerson on this example 

Augmenting Path 

Residual Network 
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Run Ford-Fulkerson on this example 

Augmenting Path 

Residual Network 
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Run Ford-Fulkerson on this example 

•  Repeat 999,999 more times… 

•  Can we do better than this? 
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The Edmonds-Karp Algorithm 

•  A small fix to the Ford-Fulkerson algorithm makes it work in polynomial time.  

•  Select the augmenting path using breadth-first search on residual network. 

•  The augmenting path p is the shortest path from s to t in the residual 
network (treating all edge weights as 1).  

•  Runs in time O(V E2). 
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The Edmonds-Karp Algorithm - example 

•  The Edmonds-Karp algorithm halts in only 2 iterations 
on this graph.  
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Further Improvements 

•  Push-relabel algorithm ([CLRS, 26.4]) – O(V2 E). 

•  The relabel-to-front algorithm ([CLRS, 26.5) – O(V3). 

•  (We will not cover these)  



An Application of Max Flow: 

Maximum Bipartite Matching 
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Maximum Bipartite Matching 

  A bipartite graph is a graph 
G=(V,E) in which V can be 
divided into two parts L and R 
such that every edge in E is 
between a vertex in L and a 
vertex in R.  

  e.g. vertices in L represent 
skilled workers and vertices in 
R represent jobs.  An edge 
connects workers to jobs they 
can perform. 
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•  A matching in a graph is a subset M of E, such that for all vertices 
v in V, at most one edge of M is incident on v.   
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•  A maximum matching is a matching of maximum cardinality 
(maximum number of edges).  

not maximum maximum 
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A Maximum Matching 

•  No matching of cardinality 4, 
because only one of v and u 
can be matched.  

•  In the workers-jobs example 
a max-matching provides 
work for as many people as 
possible.  

v 

u 



48 

Solving the Maximum Bipartite Matching Problem 

•  Reduce the maximum bipartite matching problem on graph G to the 
max-flow problem on a corresponding flow network G’. 

•  Solve using Ford-Fulkerson method. 
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Corresponding Flow Network 
•  To form the corresponding flow network G' of the bipartite graph G: 

–  Add a source vertex s and edges from s to L. 

–  Direct the edges in E from L to R.  

–  Add a sink vertex t and edges from R to t.  

–  Assign a capacity of 1 to all edges. 

•  Claim:  max-flow in G’ corresponds to a max-bipartite-matching on G. 

s 

L R 

t 

G G’ 
1 
1 
1 
1 

1 

1 

1 
1 

1 

1 
1 

1 
1 

1 
1 
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Solving Bipartite Matching as Max Flow 
= = ∪( , ) be a bipartite graph with vertex partition .L  et  G V E V L R

ʹ′ ʹ′ ʹ′= ( , ) be its corresponding flow net wLe o kt r . G V E

 is a matching in ,If   M G

ʹ′ =there is an integer-valued flow  in   with value | | | |en .th f G f M

ʹ′if  is an integer-valued fConvers low in , e y ,l  f G
=there is a matching  in  with cardinality |then | | | .M G M f

max| | max(integeT rhus  |f|)M =
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Does this mean that max |f| = max |M|? 

•  Problem:  we haven’t shown that the max flow f(u,v) is necessarily 
integer-valued.   
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Integrality Theorem 

•  If the capacity function c takes on only integral values, then: 
1.  The maximum flow f produced by the Ford-Fulkerson method has 

the property that |f| is integer-valued.  

2.  For all vertices u and v the value f(u,v) of the flow is an integer.  

•  So  max|M| = max |f| 
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Example 

min cut 

|M| = 3                  max flow =|f|= 3 
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Conclusion  

•  Network flow algorithms allow us to find the maximum 
bipartite matching fairly easily. 

•  Similar techniques are applicable in other combinatorial 
design problems.  
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Example 

•  In a department there are n courses and m instructors. 
•  Every instructor has a list of courses he or she can teach.  

•  Every instructor can teach at most 3 courses during a year.  

•  The goal: find an allocation of courses to the instructors subject to 
these constraints. 


