
Greedy Algorithms 

Credits:  Many of these slides were originally authored by Jeff Edmonds, York University.  Thanks Jeff! 
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Optimization Problems 

•  Shortest path is an example of an optimization problem:  
we wish to find the path with lowest weight. 

•  What is the general character of an optimization 
problem? 
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Ingredients: 

• Instances: The possible inputs to the problem.  

• Solutions for Instance: Each instance has an exponentially large 
set of valid solutions.  

• Cost of Solution: Each solution has an easy-to-compute cost or 
value.  

Specification 

• Preconditions: The input is one instance. 

• Postconditions: A valid solution with optimal cost. (minimum 
or maximum) 

Optimization Problems 
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Greedy Solutions to Optimization Problems 

Surprisingly, many important and practical 
optimization problems can be solved this way. 

Every two-year-old knows the greedy algorithm. 

In order to get what you want,  
just start grabbing what looks best. 
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Example 1:  Making Change 
Problem: Find the minimum # of quarters, dimes,  
nickels, and pennies that total to a given amount. 
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The Greedy Choice 

Commit to the object that looks the ``best'' 

Must prove that this locally greedy choice  
does not have negative global consequences. 
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Instance: A drawer full of coins and an amount of change to return 

25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 

 10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢ 

 5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢ 

 1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢ 

Amount = 92¢ 

Solutions for Instance:  
A subset of the coins in the drawer that total the amount 

Making Change Example 



8 

Instance: A drawer full of coins and an amount of change to return 

Solutions for Instance: A subset of the coins that total the amount. 

25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 

 10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢ 

 5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢ 

 1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢ 

Amount = 92¢ 

Cost of Solution: The number of coins in the solution = 14 

Making Change Example 

Goal: Find an optimal valid solution. 
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25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 

 10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢ 

 5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢ 

 1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢ 

Amount = 92¢ 

Making Change Example 

Greedy Choice: 

Does this lead to an optimal # of coins? 

Start by grabbing quarters until exceeds amount,  
then dimes, then nickels, then pennies.  

Cost of Solution: 7 

Instance: A drawer full of coins and an amount of change to return 
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Hard Making Change Example 

Greedy Choice: Start by grabbing a 4-cent coin. 

Problem: Find the minimum # of  
4, 3, and 1 cent coins to make up 6 cents.  

Consequences:  
   4+1+1 = 6   mistake  
   3+3=6          better 

Greedy Algorithm does not work! 
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When Does It Work? 
•  Greedy Algorithms: Easy to understand and to code, but do they 
work?  

•  For most optimization problems, all greedy algorithms tried do not 
work (i.e. yield sub-optimal solutions)   

•  But some problems can be solved optimally by a greedy algorithm.  

•  The proof that they work, however, is subtle.  

•  As with all iterative algorithms, we use loop invariants. 
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The algorithm chooses the “best” object  
from amongst those not considered so far  
and either commits to it or rejects it. 

Define Step 

Another object considered  

Make Progress 

79 km 75 km 

Exit 

All objects have been considered Exit 

Exit Condition 
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Designing a Greedy Algorithm 

¬

< >

<

< >

while  exit condition

pre-condition

lo
loop

end loop

CodeA

CodeB

C

op-invariant>

post-condit
deC

ion
o
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We have not gone wrong.  
There is at least one optimal solution 
consistent with the choices made so far. 

Loop Invariant 



15 

Initially no choices have been made and 
hence all optimal solutions are consistent 
with these choices. 

<preCond> 
codeA 

<loop-invariant> 

Establishing Loop Invariant 

Establishing the Loop Invariant 



16 

Maintaining Loop Invariant 
< < >+ →>loop-invarian CodeBMus t loot s p-ihow that nvar  iant 

< > ∃ LILI :    optimal solution consistent with choices soOptS  far

Commit to or reject next CodeB :  object

∃< > Ours optimal soln consistent with prev objects + neLI :  w obOptS  ject

Ours LImay or may not be the same asOptS Op: tS !   Note

Proof must massage optSLI into optSours and prove that optSours:  

•  is a valid solution  
•  is consistent both with previous and new choices. 
•  is optimal 
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Algorithm: 
commits to  
or rejects  
next best  
object 

His actions are 
not part of the 
algorithm 

The algorithm 
and prover do not 
know optSLI.  

Prover: 
Proves LI is 
maintained. 

Three Players 

Fairy God Mother: 
Holds the hypothetical  
optimal sol optSLI.  

optSLI 
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Proving the Loop Invariant is Maintained 

•  We need to show that the action taken by the algorithm 
maintains the loop invariant. 

•  There are 2 possible actions: 
–  Case 1.  Commit to current object 

–  Case 2.  Reject current object 



Case 1.  Committing to Current Object 
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I instruct how to massage 
optSLI  into optSours so that it 
is consistent with previous & 

new choice.  

Massaging optSLI into optSours 
25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 

 10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢ 

 5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢ 

 1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢ 

Amount = 92¢ 

I have committed to 
these coins.  

I commit to keeping 
another 25¢ 

I hold optSLI witnessing that 
there is an opt sol consistent 

with previous choices.  

I hold optSours witnessing that 
there is an opt sol consistent 

with previous & new choices.  

optSLI 
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I know that her optSLI 
is consistent with these choices.  

 

As Time Goes On 
25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 

 10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢ 

 5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢ 

 1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢ 

Amount = 92¢ 

I keep making more 
choices. 

I always hold an opt sol  optSLI 
but one that keeps changing.  

optSLI 

Hence, I know more and more of optSLI 
In the end, I know it all. 



optSLI

Case 1A.   
The object we commit to is already part of optSLI 

partial 
solution 

new 
object 

oursoptS partial 
solution 

new 
object 
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If it happens to be the case 
that the new object selected is 
consistent with the solution 
held by the fairy godmother, 

then we are done. 

Massaging optSLI into optSours 

25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 

 10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢ 

 5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢ 

 1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢ 

Amount = 92¢ optSLI 



Case 1B.   
The object we commit to is not part of optSLI 

optSLI
partial 

solution 

new 
object 
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Case 1B.  The object we commit to is not 
part of optSLI 

•  This means that our partial solution is not consistent with optSLI.  

•  The Prover must show that there is a new optimal solution optSours 
that is consistent with our partial solution. 

•  This has two parts 
–  All objects previously committed to must be part of optSours. 

–  The new object must be part of optSours. 

optSLI
partial 

solution oursoptS

new 
object 
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Case 1B.  The object we commit to is not 
part of optSLI 

•  Strategy of proof: construct a consistent optSours by replacing one 
or more objects in optSLI (but not in the partial solution) with another 
set of objects that includes the current object. 

•  We must show that the resulting optSours is still 
–  Valid 

–  Consistent 

–  Optimal 

optSLI partial 
solution 

current 
object swap 
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Case 1B.  The object we commit to is not 
part of optSLI 

•  Strategy of proof: construct a consistent optSours by replacing one 
or more objects in optSLI (but not in the partial solution) with another 
set of objects that includes the current object. 

•  We must show that the resulting optSours is still 
–  Valid 

–  Consistent 

–  Optimal 

optSLI partial 
solution 

new 
object swap 

oursoptS
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Massaging optSLI into optSours 

optSLI 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 

 10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢ 

 5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢ 

 1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢ 

Amount = 92¢ 

Replace 
• A different 25¢ • Alg’s 25¢ 

With 
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Massaging optSLI into optSours 

optSLI 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 

 10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢ 

 5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢ 

 1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢ 

Amount = 92¢ 

Replace 
• A different 25¢ • Alg’s 25¢ 

With 

• 3×10¢ • Alg’s 25¢ + 5¢ 
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Massaging optSLI into optSours 

optSLI 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 

 10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢ 

 5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢ 

 1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢ 

Amount = 92¢ 

Replace 
• A different 25¢ • Alg’s 25¢ 

With 

• 3×10¢ 

• 2×10¢ + 1×5¢ 
• Alg’s 25¢ + 5¢ 

• Alg’s 25¢ 
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Massaging optSLI into optSours 

optSLI 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 

 10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢ 

 5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢ 

 1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢ 

Amount = 92¢ 

Replace 
• A different 25¢ • Alg’s 25¢ 

With 

• 3×10¢ 

• 2×10¢ + 1×5¢ 
• Alg’s 25¢ + 5¢ 

• 1×10¢ + 3×5¢ 
• Alg’s 25¢ 

• Alg’s 25¢ 
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Massaging optSLI into optSours 

optSLI 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 

 10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢ 

 5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢ 

 1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢ 

Amount = 92¢ 

Replace 
• A different 25¢ • Alg’s 25¢ 

With 

• ??       + 5×1¢ 

• 3×10¢ 

• 2×10¢ + 1×5¢ 
• Alg’s 25¢ + 5¢ 

• 1×10¢ + 3×5¢ 
• Alg’s 25¢ 

• Alg’s 25¢ 

• Alg’s 25¢ 
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#Coins #Coins
1Q 1 1Q 1
3D 3 1Q 1N 2
2D 1N 3 1Q 1
2D 5P 7 1Q 1
1D 3N 4 1Q 1
1D 2N 5P 8 1Q 1
1D 1N 10P 12 1Q 1
1D 15P 16 1Q 1
5N 5 1Q 1
4N 5P 9 1Q 1
3N 10P 13 1Q 1
2N 15P 17 1Q 1
1N 20P 21 1Q 1
25P 25 1Q 1

OursoptS

Must Consider All Cases 

•  Note that in all cases our new solution optSours is: 
–  Valid:  the sum is still correct 

–  Consistent with our previous choices (we do not alter these). 

–  Optimal:  we never add more coins to the solution than we delete 

LIoptS
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optSLI 
Done 

optSours 

Massaging optSLI into optSours 

She now has something. 
We must prove that it is 

what we want. 
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optSours 
optSours is valid 

optSLI was valid and we 
introduced no new conflicts. 

Massaging optSLI into optSours 

Total remains unchanged. 

Replace 
•  A different 25¢ • Alg’s 25¢ 

With 

• ??       + 5×1¢ 

• 3×10¢ 

• 2×10¢ + 1×5¢ 

• Alg’s 25¢ + 5¢ 

• 1×10¢ + 3×5¢ 
• Alg’s 25¢ 

• Alg’s 25¢ 
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optSours is consistent 
 

Massaging optSLI into optSours 

optSLI was consistent with  
previous choices and we made  
it consistent with new. 

25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 

 10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢ 

 5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢ 

 1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢ 

Amount = 92¢ 

optSours 
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optSours is optimal 
We do not even know the  
cost of an optimal solution.  

Massaging optSLI into optSours 

optSLI was optimal and  
optSours cost (# of coins) is not bigger. 

• Alg’s 25¢ 
With 

• ??       + 5×1¢ 

• 3×10¢ 

• 2×10¢ + 1×5¢ 

• Alg’s 25¢ + 5¢ 

• 1×10¢ + 3×5¢ 
• Alg’s 25¢ 

• Alg’s 25¢ 

optSours 

Replace 
•  A different 25¢ 
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Committing to Other Coins 

•  Similarly, we must show that when the algorithm selects 
a dime, nickel or penny, there is still an optimal solution 
consistent with this choice. 

dime
LI OursoptS optS+⎯⎯⎯→

nickel
L OursIo tSptS op+⎯⎯⎯⎯→

penny
I OursLo SptS opt+⎯⎯⎯⎯→
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Example:  Dimes 

–  We only commit to a dime when less than 25¢ is unaccounted for. 

–  Therefore the coins in optSLI that this dime replaces have to be 
dimes, nickels or pennies. 

#Coins #Coins
1D 1 1D 1
2N 2 1D 1
1N 5P 6 1D 1
10P 10 1D 1

OursoptSLIoptS
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Committing to Other Coins 

•  We must consider all possible coins we might select: 
–  Quarter: Swap for another quarter, 3 dimes (with a nickel) etc. 

–  Dime: Swap for another dime, 2 nickels, 1 nickel + 5 pennies etc. 

–  Nickel: Swap for another nickel or 5 pennies. 

–  Penny: Swap for another penny. 
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optSours is valid 

optSours is consistent 
 

optSours is optimal 

<LI> optSours 

Massaging optSLI into optSours Case 1 

<LI> 
¬<exit Cond> 
codeB 

<LI> 

Exit Maintaining Loop Invariant 

optSours 



Case 2.  Rejecting the Current Object 
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Rejecting the Current Object 

Strategy of Proof:

LI1. There is at least one optimal solution  consistent with previous choioptS ces.

2. Any optimal solution consistent with previous choices cannot include current object.

LI3. Therefore  cannot include current objoptS ect.
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Rejecting an Object 

•  Making Change Example: 
–  We only reject an object when including it would make us 

exceed the total. 

–  Thus optSLI cannot include the object either. 
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optSLI I hold optSLI witnessing that 
there is an opt sol consistent 

with previous choices.  

I must make sure that what the Fairy 
God Mother has is consistent with this 

new choice. 

Massaging optSLI into optSours Case 2 
25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 

 10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢ 

 5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢ 

 1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢ 

Amount = 92¢ 

I reject the next 25¢ 
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The Algorithm has  
92¢-75¢ = 17¢ < 25¢ unchoosen. 

Massaging optSLI into optSours 

25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 

 10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢  10¢ 

 5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢  5¢ 

 1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢ 

Amount = 92¢ optSLI 

Fairy God Mother must  
have < 25¢ that I don’t know about. 

optSLI does not contain the 25¢ either. 
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<loop-invariant> 
<exit Cond> 
codeC 

<postCond> Exit 

Clean up loose ends 

Alg has committed to or rejected each object.  
Has yielded a solution S.    

<exit Cond> 

<LI> ∃ opt sol consistent with these choices. 

S must be optimal.  

Alg returns S . 
<postCond> 

codeC 
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Making Change Example 

Greedy Choice: Start by grabbing quarters until exceeds 
amount, then dimes, then nickels, then pennies.  

Problem: Find the minimum # of quarters, dimes,  
nickels, and pennies that total to a given amount. 

Does this lead to an optimal # of coins? 

Yes 
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Hard Making Change Example 

Greedy Choice: Start by grabbing a 4 coin. 

Problem: Find the minimum # of  
4, 3, and 1 cent coins to make up 6 cents.  
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I will now instruct how to 
massage optSLI  into optSours so 

that it is consistent with 
previous & new choice. 

Massaging optSLI into optSours 

4¢ 4¢ 4¢ 4¢ 4¢ 4¢ 4¢ 4¢ 4¢ 4¢ 

 3¢  3¢  3¢  3¢  3¢  3¢  3¢  3¢  3¢  3¢ 

 1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢  1¢ 

Amount = 6¢ 
optSLI 

I commit to keeping a 4¢ 

I hold optSLI.  

Oops! 
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Hard Making Change Example 

Greedy Choice: Start by grabbing a 4 coin. 

Problem: Find the minimum # of  
4, 3, and 1 cent coins to make up 6 cents.  

Consequences:  
   4+1+1 = 6   mistake  
   3+3=6          better 

Greedy Algorithm does not work! 
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Analysing Arbitrary Systems of Denominations 

•  Suppose we are given a system of coin denominations.  How do we 
decide whether the greedy algorithm is optimal?  

•  It turns out that this problem can be solved in O(D3) time, where D = 
number of denominations (e.g., D=6 in Canada) (Pearson 1994).  



53 

Designing Optimal Systems of Denominations 

In Canada, we use a 6 coin system: 
1 cent, 5 cents, 10 cents, 25 cents, 100 cents and 200 cents.

Assuming that , the change to be made, is uniformly distributed 
over {1,...,499}, the expected number of coins per transaction is 5.9.

N

The optimal (but non-greedy) 6-coin systems are (1,6,14,62,99,140) and 
(1,8,13,69,110,160), each of which give an expected 4.67 coins per transaction.

The optimal  6-coin systems are (1,3,8,26,64,{202 or 203 or 204}) 
and (1,3,10,25,79,{195 or 196 or 197}) with an expected cost of 5.036 
coins per transaction. 

greedy
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Summary 

•  We must prove that every coin chosen or rejected in 
greedy fashion still leaves us with a solution that is 
–  Valid 

–  Consistent 

–  Optimal 

•  We prove this using an inductive ‘cut and paste’ method. 

•  We know from the previous iteration we have a partial 
solution Spart that is part of some complete optimal 
solution optSLI.  

optSLI
partial 

solution 

new 
object 
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Summary 
•  Selecting a coin: we show that we can replace a subset 

of the coins in optSLI\ Spart with the selected coin (+ 
perhaps some additional coins). 
–  Valid because we ensure that the trade is fair (sums are equal) 

–  Consistent because we have not touched Spart 

–  Optimal because the number of the new coin(s) is no greater 
than the number of coins they replace. 

•  Rejecting a coin:  we show that we only reject a coin 
when it could not be part of optSLI. 

optSLI partial 
solution 

new 
object swap 

oursoptS



Example 2:  Job/Event Scheduling 
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Ingredients: 

• Instances: Events with starting and finishing times  

 <<s1,f1>,<s2,f2>,… ,<sn,fn>>. 

• Solutions: A set of events that do not overlap.  

• Value of Solution: The number of events scheduled.  

• Goal: Given a set of events, schedule as many as possible. 

• Example:  Scheduling lectures in a lecture hall. 

The Job/Event Scheduling Problem 
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Possible Criteria for Defining “Best” 

The Shortest Event  

Counter Example 

Does not  book the room  
for a long period of time. 

Motivation: 

Optimal 
Schedule first 

Optimal 

Greedy Criterion: 
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Possible Criteria for Defining “Best” 

The Earliest Starting Time 

Counter Example 

Gets room in use as early as possible Motivation: 

Optimal 
Schedule first 

Optimal 

Greedy Criterion: 
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Possible Criteria for Defining “Best” 

Conflicting with the Fewest Other Events 

Counter Example 

Leaves many that can still be scheduled. Motivation: 

Schedule first 
Optimal 

Optimal 

Greedy Criterion: 
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Possible Criteria for Defining “Best” 

Earliest Finishing Time 
Schedule the event that will  
free up your room for someone  
else as soon as possible. 

Motivation: 
Greedy Criterion: 
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The Greedy Algorithm 
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Massaging optSLI into optSours 

optSLI 

Start by adding new event i. 

Delete events conflicting with job i. 
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Massaging optSLI into optSours 

optSLI 

optSLI was valid and we 
removed any new conflicts. 

optSours is valid 
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Massaging optSLI into optSours 

optSLI 

optSLI was consistent with our prior choices.  
We added event i.  
Events in Commit don’t conflict with event i 
and hence were not deleted. 

optSours is consistent with our choices. 
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Massaging optSLI into optSours 

optSLI 

optSLI was optimal. 
If we delete at most one event 
then optSours is optimal too. 

optSours is optimal 
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Massaging optSLI into optSours 

optSLI 

Only one in optSLI. 

Deleted at most one event j 

j 

i<j 

⇒ j runs at time fi. 
Two such j conflict with each other. 

j’ 

[j conflicts with i] ⇒ sj ≤ fi 

⇒ fi ≤ fj 
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optSLI 

optSours 

optSours is valid 

optSours is consistent 
 

optSours is optimal 

<LI> optSours 

Massaging optSLI into optSours Case 1 

<LI> 
¬<exit Cond> 
codeB 

<LI> 

Exit Maintaining Loop Invariant 
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optSLI 
I hold optSLI witnessing that there 

is an opt sol consistent with 
previous choices.  

I reject next event i. 

Massaging optSLI into optSours Case 2 

Event i conflicts with events committed  
to so it can’t be in optSLI either. 
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optSLI 

Massaging optSLI into optSours 

<LI> 
¬<exit Cond> 
codeB 

<LI> 

Exit Maintaining Loop Invariant 
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<loop-invariant> 
<exit Cond> 
codeC 

<postCond> Exit 

Clean up loose ends 

Alg commits to or reject each event.  
Has a solution S.    

<exit Cond> 

<LI> ∃ opt sol consistent with these choices. 
S must be optimal.  

Alg returns optS . 

<postCond> 

codeC 
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Running Time 
Greedy algorithms are very fast because they only 
consider each object once.   

Checking whether next event i conflicts with  
previously committed events requires  
only comparing it with the last such event. 
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Running Time 

( ) ( log )T n n nθ→ =

( log )n nθ

( )nθ



Example 3:  Minimum Spanning Trees 
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Minimum Spanning Trees 
•  Example Problem 

–  You are planning a new terrestrial telecommunications network to 
connect a number of remote mountain villages in a developing country.   

–  The cost of building a link between pairs of neighbouring villages (u,v) 
has been estimated: w(u,v). 

–  You seek the minimum cost design that ensures each village is 
connected to the network. 

–  The solution is called a minimum spanning tree (MST). 
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Minimum Spanning Trees 

The weight of a subset  of a weighted graph is defined as:T

( , )
( ) ( , )

u v T
w T w u v

∈

= ∑

Thus the MST is the spanning tree  that minimizes ( )T w T

The problem is defined for any undirected, connected, weighted graph.
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Building the Minimum Spanning Tree 
•  Iteratively construct the set of edges A in the MST. 

•  Initialize A to {} 

•  As we add edges to A, maintain a Loop Invariant: 
–  A is a subset of some MST 

•  Maintain loop invariant and make progress by only 
adding safe edges. 

•  An edge (u,v) is called safe for A iff A∪({u,v}) is also 
a subset of some MST.   



78 

Finding a safe edge 

•  Idea:  Every 2 disjoint subsets of vertices must be connected by 
at least one edge. 

•  Which one should we choose? 
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Some definitions 
•  A cut (S,V-S) is a partition of vertices into disjoint sets 

S and V-S. 

•  Edge (u,v)∈E crosses cut (S, V-S) if one endpoint is 
in S and the other is in V-S. 

•  A cut respects a set of edges A iff no edge in A 
crosses the cut. 

•  An edge is a light edge crossing a cut iff its weight is 
minimum over all edges crossing the cut. 

A
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Minimum Spanning Tree Theorem 
•  Let  

–  A be a subset of some MST 

–  (S,V-S) be a cut that respects A 

–  (u,v) be a light edge crossing (S,V-S) 

•  Then  
–  (u,v) is safe for A. 

A

Basis for a greedy algorithm 
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Proof 
•  Let G be a connected, undirected, weighted graph. 

•  Let T be an MST that includes A. 

•  Let (S,V-S) be a cut that respects A. 

•  Let (u,v) be a light edge between S and V-S. 

•  If T contains (u,v) then we’re done. 

u 

v 

S 

V - S 

Edge T∈

Edge T∉
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u 
x 

v 
y 

S 

V - S 

•  Suppose T does not contain (u,v) 
–  Can construct different MST T' that 

includes A∪(u,v)  

–  The edge (u,v) forms a cycle with the 
edges on the path p from u to v in T. 

–  There is at least one edge in p that 
crosses the cut:  let that edge be (x,y) 

–  (x,y) is not in A, since the cut (S,V-S) 
respects A. 

–  Form new spanning tree T' by 
deleting (x,y) from T and adding 
(u,v). 

–  w(T') ≤ w(T), since w(u,v) ≤ w(x,y) 
T' is an MST. 

–  A ⊆ T', since A ⊆ T and (x,y)∉A  
A∪(u,v) ⊆ T'  

–  Thus (u,v) is safe for A. 

p 
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Kruskal’s Algorithm for computing MST 

•  Starts with each vertex being its own component. 

•  Repeatedly merges two components into one by 
choosing the light edge that crosses the cut between 
them. 

•  Scans the set of edges in monotonically increasing 
order by weight (greedy). 
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Kruskal’s Algorithm:  Loop Invariant 

Let solution under construction.
Let  the subset of  lowest-weight edges thus f

loop-invariant :
 MST :

1) ,
2) ( ,

ar considered 

) :
    ( , )   ( , )  

i

i

T
A T
u v E
u v A o

A
E

r u v T

i
=

< >

∃

∈

∀

=

∈

∈ ∉
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Kruskal’s Algorithm:  Example 
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Kruskal’s Algorithm:  Example 
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Kruskal’s Algorithm:  Example 
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Kruskal’s Algorithm:  Example 
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Kruskal’s Algorithm:  Example 
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Kruskal’s Algorithm:  Example 
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Kruskal’s Algorithm:  Example 
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Kruskal’s Algorithm:  Example 
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Kruskal’s Algorithm:  Example 
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Kruskal’s Algorithm:  Example 
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Kruskal’s Algorithm:  Example 
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Kruskal’s Algorithm:  Example 
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Kruskal’s Algorithm:  Example 
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Kruskal’s Algorithm:  Example 

Finished! 



99 

Disjoint Set Data Structures 

•  Disjoint set data structures can be used to represent the 
disjoint connected components of a graph. 

•  Make-Set(x) makes a new disjoint component containing 
only vertex x. 

•  Union(x,y) merges the disjoint component containing 
vertex x with the disjoint component containing vertex y. 

•  Find-Set(x) returns a vertex that represents the disjoint 
component containing x. 
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Disjoint Set Data Structures 
•  Most efficient representation represents each disjoint set 

(component) as a tree. 

•  Time complexity of a sequence of m operations, n of 
which are Make-Set operations, is: 

( ( ))O m nα×

where ( ) is Ackerman's function, which grows extremely slowly.nα

80

( )
3 1
7 2

2047 3
10 4

n nα
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Kruskal’s Algorithm for computing MST 

Running Time =  O(ElogE)  
= O(ElogV)  

Kruskal( , )

for each vertex [ ]
Make-Set(v)

sort E[G] into nondecreasing order:

loop-invariant :
 MST :1)

 [1... ]
for 1:

( , ) [ ]
if Find-Set( ) Fi

,
2) ( , ) [1... 1]: ( , )   ,

n

( )

G w
A

v V G

E n
i n

T A T
u v E i u v A or u v

v i
T

u E
u

=∅

∈

=

=

< >

∃ ∈

∀ −

≠

∈ ∈ ∉

d-Set( )
{( , )}

Union( , )
return 

v
A A u v

u v
A

= ∪
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Prim’s Algorithm for Computing MST 
•  Build one tree A 

•  Start from arbitrary root r 

•  At each step, add light edge connecting VA to V- VA 
(greedy) 
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Prim’s Algorithm:  Example 
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Prim’s Algorithm:  Example 
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Prim’s Algorithm:  Example 
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Prim’s Algorithm:  Example 
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Prim’s Algorithm:  Example 
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Prim’s Algorithm:  Example 
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Prim’s Algorithm:  Example 
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Prim’s Algorithm:  Example 
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Prim’s Algorithm:  Example 

Finished! 
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Finding light edges quickly 

•  All vertices not in the partial MST formed by A reside in a min-
priority queue. 

•  Key(v) is minimum weight of any edge (u,v), u∈ VA. 

•  Priority queue can be implemented as a min heap on key(v). 

•  Each vertex in queue knows its potential parent in partial MST by π
[v]. 
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Prim’s Algorithm 
Let {( , [ ]) : - { } - }
Let 
<loop-invariant>:
1.  MST :
2. v Q, if [ ] NIL 

then [ ] weight of light edge connecting  to 

A

A

A v v v V r Q
V V Q

T A T
v
key v v V

π

π

= ∈

= −

∃ ∈

∀ ∈ ≠

=
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Prim’s Algorithm 

( )O V

Executed | |  timesV
(log )O V

Executed |E | times

(log )O V

Running Time = ( log )O E V
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Algorithm Comparison 

•  Both Kruskal’s and Prim’s algorithm are greedy. 

–  Kruskal’s:  Queue is static (constructed before loop) 

–  Prim’s:  Queue is dynamic (keys adjusted as edges are 
encountered) 


