Greedy Algorithms

Optimization Problems

- Shortest path is an example of an optimization problem: we wish to find the path with lowest weight.
- What is the general character of an optimization problem?

Optimization Problems

Ingredients:
-Instances: The possible inputs to the problem.
-Solutions for Instance: Each instance has an exponentially large set of valid solutions.

- Cost of Solution: Each solution has an easy-to-compute cost or value.

Specification
-Preconditions: The input is one instance.
-Postconditions: A valid solution with optimal cost. (minimum or maximum)

Greedy Solutions to Optimization Problems

Every two-year-old knows the greedy algorithm.
In order to get what you want, just start grabbing what looks best.

Surprisingly, many important and practical optimization problems can be solved this way.

Example 1: Making Change

Problem: Find the minimum \# of quarters, dimes, nickels, and pennies that total to a given amount.

The Greedy Choice

Commit to the object that looks the "best"

Must prove that this locally greedy choice does not have negative global consequences.

Making Change Example

Instance: A drawer full of coins and an amount of change to return

Solutions for Instance:
A subset of the coins in the drawer that total the amount

Making Change Example

Instance: A drawer full of coins and an amount of change to return

Solutions for Instance: A subset of the coins that total the amount.

Cost of Solution: The number of coins in the solution $=14$

Goal: Find an optimal valid solution.

Making Change Example

Instance: A drawer full of coins and an amount of change to return

Greedy Choice:
Start by grabbing quarters until exceeds amount, then dimes, then nickels, then pennies.

Does this lead to an optimal \# of coins?
Cost of Solution: 7

Hard Making Change Example

Problem: Find the minimum \# of
4,3 , and 1 cent coins to make up 6 cents.
Greedy Choice: Start by grabbing a 4-cent coin.

Consequences:
$4+1+1=6$ mistake
$3+3=6$ better

Greedy Algorithm does not work!

When Does It Work?

- Greedy Algorithms: Easy to understand and to code, but do they work?
- For most optimization problems, all greedy algorithms tried do not work (i.e. yield sub-optimal solutions)
- But some problems can be solved optimally by a greedy algorithm.
- The proof that they work, however, is subtle.
- As with all iterative algorithms, we use loop invariants.

Define Step

The algorithm chooses the "best" object from amongst those not considered so far and either commits to it or rejects it.

Make Progress

Another object considered

Exit Condition
Exit All objects have been considered

Designing a Greedy Algorithm

< pre-condition >
CodeA
loop
< loop-invariant>
while \neg exit condition
CodeB
end loop
CodeC
< post-condition >

Loop Invariant

We have not gone wrong.
There is at least one optimal solution consistent with the choices made so far.

Establishing the Loop Invariant

Establishing Loop Invariant <preCond> codeA
 <loop-invariant>

Initially no choices have been made and hence all optimal solutions are consistent with these choices.

Maintaining Loop Invariant

Must show that < loop-invariant > + CodeB \rightarrow <loop-invariant >
: \exists optimal solution $\mathrm{OptS}_{\mathrm{LI}}$ consistent with choices so far
CodeB : Commit to or reject next object
$<\mathrm{LI}$ >: \exists optimal soln OptS ${ }_{\text {Ours }}$ consistent with prev objects + new object
Note: OptS $_{\text {Ours }}$ may or may not be the same as OptS $_{\text {LI }}$!
Proof must massage optS S_{L} into optS ours and prove that optS ours :

- is a valid solution
- is consistent both with previous and new choices.
- is optimal

Algorithm: commits to or rejects next best object

Three Players

Prover:
Proves LI is maintained.

His actions are not part of the algorithm

Fairy God Mother:
Holds the hypothetical optimal sol optS ${ }_{\text {LI }}$.

The algorithm and prover do not know optS ${ }_{\text {LI }}$.

Proving the Loop Invariant is Maintained

- We need to show that the action taken by the algorithm maintains the loop invariant.
- There are 2 possible actions:
- Case 1. Commit to current object
- Case 2. Reject current object

Case 1. Committing to Current Object

Massaging optS ${ }_{\text {LI }}$ into optS ours

I hold optS ${ }_{\text {ours }}$ witnessing that there is an opt sol consistent with previous \& new choices.

I commit to keeping another 25°

I instruct how to massage optS LI $_{\text {Into }}$ optS ${ }_{\text {ours }}$ so that it is consistent with previous \& new choice.

As Time Goes On

I always hold an opt sol optS but one that keeps changing.

I keep making more choices.

I know that her optS S_{LI}

 is consistent with these choices.Hence, I know more and more of optS LI In the end, I know it all.

Case 1A.

The object we commit to is already part of optS ${ }_{\text {LI }}$

Massaging optS ${ }_{\text {LI }}$ into optS ours

$$
\begin{aligned}
& \text { Amount }=92^{6}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llllllllll}
5^{\phi} & 5^{\phi} \\
1^{\phi} & 1^{\phi}
\end{array}
\end{aligned}
$$

If it happens to be the case that the new object selected is consistent with the solution held by the fairy godmother, then we are done.

Case 1B.

The object we commit to is not part of optS ${ }_{\text {LI }}$

Case 1B. The object we commit to is not part of optS ${ }_{\text {LI }}$

- This means that our partial solution is not consistent with optS LI .
- The Prover must show that there is a new optimal solution optS ${ }_{\text {ours }}$ that is consistent with our partial solution.
- This has two parts
- All objects previously committed to must be part of optS ours .
- The new object must be part of optS ours .

Case 1B. The object we commit to is not part of optS ${ }_{\text {LI }}$

- Strategy of proof: construct a consistent optS ours by replacing one or more objects in optS ${ }_{\text {LI }}$ (but not in the partial solution) with another set of objects that includes the current object.
- We must show that the resulting optS ours is still
- Valid
- Consistent
- Optimal

26

Case 1B. The object we commit to is not part of optS ${ }_{\text {LI }}$

- Strategy of proof: construct a consistent optS ours by replacing one or more objects in optS ${ }_{\text {LI }}$ (but not in the partial solution) with another set of objects that includes the current object.
- We must show that the resulting optS ours is still
- Valid
- Consistent
- Optimal

27

Massaging optS LI $_{\text {LI }}$ into optS ours

$$
\begin{aligned}
& \text { Amount }=922^{\text {¢ }}
\end{aligned}
$$

Replace
-A different 25°

With

- Alg's $25^{\text {c }}$

Massaging optS ${ }_{\text {LI }}$ into optS $\mathrm{S}_{\text {ours }}$

$$
\begin{aligned}
& \text { Amount }=92^{6}
\end{aligned}
$$

Replace
-A different 25^{ϕ}
$\cdot 3 \times 10^{6}$

With

- Alg's $25^{\text {b }}$
- Alg's $25^{\text {d }}+5^{\text {b }}$

Massaging optS LI $_{\text {LI }}$ into optS ours

$$
\begin{aligned}
& \text { Amount }=92^{6}
\end{aligned}
$$

Replace
-A different 25^{ϕ}
$-3 \times 10^{\text {¢ }}$
$0^{6}+1 \times 5^{6}$

With

- Alg's $25^{\text {c }}$
-Alg's $25^{c}+5^{\text {c }}$
- Alg's 25^{6}

Massaging optS ${ }_{\text {LI }}$ into optS ours

Replace
-A different 25^{ϕ}

- $3 \times 10^{\text {d }}$
$-2 \times 10^{6}+1 \times 5^{6}$
$\cdot 1 \times 10^{\phi}+3 \times 5^{\phi}$

With

- Alg's $25^{\text {c }}$
-Alg's $25^{c}+5^{\text {c }}$
-Alg's 25^{6}
-Alg's 25^{6}

Massaging optS ${ }_{\text {LI }}$ into optS $\mathrm{S}_{\text {ours }}$

Replace
-A different 25^{ϕ}

- $3 \times 10^{\text {d }}$
$\cdot 2 \times 10^{6}+1 \times 5^{6}$
$\cdot 1 \times 10^{\phi}+3 \times 5$ 串
$? ?+5 \times 1$?

With

- Alg's $25^{\text {c }}$
-Alg's $25^{\phi}+5^{6}$
- Alg's $25^{\text {c }}$
- Alg's $25^{\text {e }}$
- Alg's $25^{\text {c }}$

Must Consider All Cases

optS $_{\text {LI }}$	\#Coins	optS ours	\#Coins
1Q	1	$1 Q$	1
3D	3	1Q 1N	2
2D 1N	3	$1 Q$	1
2D 5P	7	$1 Q$	1
1D 3N	4	$1 Q$	1
1D 2N 5P	8	$1 Q$	1
1D 1N 10P	12	$1 Q$	1
1D 15P	16	$1 Q$	1
5N	5	$1 Q$	1
4N 5P	9	$1 Q$	1
3N 10P	13	$1 Q$	1
2N 15P	17	$1 Q$	1
1N 20P	21	$1 Q$	1
25P	25	$1 Q$	1

- Note that in all cases our new solution optS ${ }_{\text {ours }}$ is:
- Valid: the sum is still correct
- Consistent with our previous choices (we do not alter these).
- Optimal: we never add more coins to the solution than we delete

Massaging optS LI $_{\text {I }}$ into optS ours

Massaging optS ${ }_{\text {LI }}$ into optS ours

optS ${ }_{\text {ours }}$ is valid

optS S_{LI} was valid and we introduced no new conflicts. Total remains unchanged.

Replace	With
\bullet A different 25^{ϕ}	\bullet Alg's 25^{ϕ}
$\bullet 3 \times 10^{\phi}$	\bullet Alg's $25^{\phi}+5^{\phi}$
$\cdot 2 \times 10^{\phi}+1 \times 5^{\phi}$	\bullet Alg's 25^{ϕ}
$\bullet 1 \times 10^{\phi}+3 \times 5^{\phi}$	\bullet Alg's 25^{ϕ}
$\bullet ? ?+5 \times 1^{\phi}$	

Massaging optS ${ }_{\text {LI }}$ into optS ${ }_{\text {ours }}$

Massaging optS ${ }_{\text {LI }}$ into optS ${ }_{\text {ours }}$

optS ${ }_{\text {ours }}$ is optimal

We do not even know the
cost of an optimal solution.
optS ${ }_{\text {LI }}$ was optimal and
optS ours cost (\# of coins) is not bigger.

Replace - A different	$\begin{gathered} \text { With } \\ \cdot \text { Alg's } 25^{\phi} \end{gathered}$
- 3×10^{6}	- Alg's $25^{\text {d }}+5^{\text {d }}$
$\times 10^{6}+1 \times 5^{6}$	- Alg's $25^{\text {¢ }}$
- $1 \times 10^{6}+3 \times 5{ }^{\text {c }}$	- Alg's $25^{\text {c }}$
$3+?+5 \times 1$?	

Committing to Other Coins

- Similarly, we must show that when the algorithm selects a dime, nickel or penny, there is still an optimal solution consistent with this choice.
optS $_{\text {LI }} \xrightarrow{+ \text { dime }}$ opt $_{\text {Ours }}$
optS $S_{L I} \xrightarrow{+ \text { nickel }}$ optS $S_{\text {Ours }}$
opt $S_{L I} \xrightarrow{\text { +penny }}$ opt $S_{\text {Ours }}$

Example: Dimes

- We only commit to a dime when less than 25ϕ is unaccounted for.
- Therefore the coins in optS ${ }_{\text {LI }}$ that this dime replaces have to be dimes, nickels or pennies.

optS $_{\text {LI }}$	\#Coins	optS $_{\text {Ours }}$	\#Coins
1D	1	1D	1
2N	2	1D	1
1N 5P	6	1D	1
10P	10	1D	1

Committing to Other Coins

- We must consider all possible coins we might select:
- Quarter: Swap for another quarter, 3 dimes (with a nickel) etc.
- Dime: Swap for another dime, 2 nickels, 1 nickel +5 pennies etc.
- Nickel: Swap for another nickel or 5 pennies.
- Penny: Swap for another penny.

Massaging optS ${ }_{\text {LI }}$ into optS ${ }_{\text {ours }}$

optS ${ }_{\text {ours }}$ is valid

$$
\text { optS }_{\text {ours }} \text { is optimal }
$$

optS ours is consistent
optS $_{\text {ours }} \square$

Maintaining Loop Invariant

$\neg<e x i t$ Gond> code

Case 2. Rejecting the Current Object

Rejecting the Current Object

Strategy of Proof:

1. There is at least one optimal solution $\mathrm{optS}_{\mathrm{L}}$ consistent with previous choices.
2. Any optimal solution consistent with previous choices cannot include current object.
3. Therefore optS ${ }_{\llcorner }$cannot include current object.

Rejecting an Object

- Making Change Example:
- We only reject an object when including it would make us exceed the total.
- Thus optS ${ }_{\text {LI }}$ cannot include the object either.

Massaging optS ${ }_{\text {LI }}$ into optS ours

Massaging optS ${ }_{\text {LI }}$ into optS $\mathrm{S}_{\text {ours }}$

$$
\begin{aligned}
& \text { Amount }=92{ }^{\text {c }}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llllllllll}
5^{\phi} & 5^{\phi} \\
1^{\phi} & 1^{\phi}
\end{array}
\end{aligned}
$$

The Algorithm has

 $92^{\phi}-75^{\phi}=17^{\phi}<25^{\phi}$ unchoosen.Fairy God Mother must have $<25^{\phi}$ that I don't know about. does not contain the 25^{ϕ} either.

Clean up loose ends

<loop-invariant>
<exit Cond> codeC

<postCond>
<exit Cond>

$\square \exists \mathrm{opt}$ sol consistent with these choices.
must be optimal.
codeC
\square Alg returns S .

<postCond>

Making Change Example

Problem: Find the minimum \# of quarters, dimes, nickels, and pennies that total to a given amount.

Greedy Choice: Start by grabbing quarters until exceeds amount, then dimes, then nickels, then pennies.

Does this lead to an optimal \# of coins?

Yes

Hard Making Change Example

Problem: Find the minimum \# of
4,3 , and 1 cent coins to make up 6 cents.
Greedy Choice: Start by grabbing a 4 coin.

Massaging optS ${ }_{\text {LI }}$ into optS ours

Hard Making Change Example

Problem: Find the minimum \# of
4,3 , and 1 cent coins to make up 6 cents.
Greedy Choice: Start by grabbing a 4 coin.

Consequences:
$4+1+1=6$ mistake
$3+3=6$ better

Greedy Algorithm does not work!

Analysing Arbitrary Systems of Denominations

- Suppose we are given a system of coin denominations. How do we decide whether the greedy algorithm is optimal?
- It turns out that this problem can be solved in $O\left(D^{3}\right)$ time, where $D=$ number of denominations (e.g., $D=6$ in Canada) (Pearson 1994).

Designing Optimal Systems of Denominations

In Canada, we use a 6 coin system:
1 cent, 5 cents, 10 cents, 25 cents, 100 cents and 200 cents.

Assuming that N, the change to be made, is uniformly distributed over $\{1, \ldots, 499\}$, the expected number of coins per transaction is 5.9.

The optimal (but non-greedy) 6 -coin systems are $(1,6,14,62,99,140)$ and $(1,8,13,69,110,160)$, each of which give an expected 4.67 coins per transaction.

The optimal greedy 6 -coin systems are ($1,3,8,26,64,\{202$ or 203 or 204\}) and ($1,3,10,25,79,\{195$ or 196 or 197$\}$) with an expected cost of 5.036 coins per transaction.

Summary

- We must prove that every coin chosen or rejected in greedy fashion still leaves us with a solution that is
- Valid
- Consistent
- Optimal
- We prove this using an inductive 'cut and paste' method.
- We know from the previous iteration we have a partial solution $S_{\text {part }}$ that is part of some complete optimal solution optS Ll .

54

Summary

- Selecting a coin: we show that we can replace a subset of the coins in optS ${ }_{L l} \backslash S_{\text {part }}$ with the selected coin (+ perhaps some additional coins).
- Valid because we ensure that the trade is fair (sums are equal)
- Consistent because we have not touched $S_{\text {part }}$
- Optimal because the number of the new coin(s) is no greater than the number of coins they replace.
- Rejecting a coin: we show that we only reject a coin when it could not be part of optS $S_{L /}$.

55

Example 2: Job/Event Scheduling

The Job/Event Scheduling Problem

Ingredients:
-Instances: Events with starting and finishing times

$$
\ll \mathbf{s}_{1}, \mathbf{f}_{1}>,<\mathbf{s}_{2}, \mathbf{f}_{2}>, \ldots,<\mathbf{s}_{\mathbf{n}}, \mathbf{f}_{\mathbf{n}} \gg
$$

- Solutions: A set of events that do not overlap.
-Value of Solution: The number of events scheduled.
-Goal: Given a set of events, schedule as many as possible.
-Example: Scheduling lectures in a lecture hall.

Possible Criteria for Defining "Best"

Optimal

Greedy Criterion:The Shortest Event
Motivation: Does not book the room for a long period of time.

Schedule first
 Optimal

Counter Example

Possible Criteria for Defining "Best"

Greedy Criterion:The Earliest Starting Time
Motivation: Gets room in use as early as possible

Schedule first
 Optimal

Counter Example

Possible Criteria for Defining "Best"

Optimal

Greedy Criterion:

Conflicting with the Fewest Other Events

Motivation: Leaves many that can still be scheduled.

Possible Criteria for Defining "Best"

Greedy Criterion: Earliest Finishing Time
Motivation: Schedule the event that will free up your room for someone else as soon as possible.

The Greedy Algorithm

algorithm Scheduling $\left(\left\langle\left\langle s_{1}, f_{1}\right\rangle,\left\langle s_{2}, f_{2}\right\rangle, \ldots,\left\langle s_{n}, f_{n}\right\rangle\right\rangle\right)$
$\langle\boldsymbol{p r e}-\boldsymbol{c o n d}\rangle$: The input consists of a set of events.
\langle post-cond \rangle : The output consists of a schedule that maximizes the number
begin of events scheduled.

Sort the events based on their finishing times f_{i}
Commit $=\emptyset \quad \%$ The set of events committed to be in the schedule
loop $i=1 \ldots n$ \% Consider the events in sorted order.
if(event i does not conflict with an event in Commit) then Commit $=$ Commit $\cup\{i\}$
end loop
return(Commit)
end algorithm

Massaging optS ${ }_{\text {LI }}$ into optS ${ }_{\text {ours }}$

Massaging optS ${ }_{\text {LI }}$ into optS ${ }_{\text {ours }}$

Massaging optS ${ }_{\text {LI }}$ into optS ours

Massaging optS ${ }_{\text {LI }}$ into optS ${ }_{\text {ours }}$

Massaging optS ${ }_{\text {LI }}$ into optS ${ }_{\text {ours }}$

Deleted at most one event j
$\mathrm{i}<\mathrm{j} \Rightarrow \mathrm{f}_{\mathrm{i}} \leq \mathrm{f}_{\mathrm{j}}$
[j conflicts with i] $\Rightarrow \mathrm{s}_{\mathrm{j}} \leq \mathrm{f}_{\mathrm{i}}$
$\Rightarrow \mathrm{j}$ runs at time f_{i}.
Two such j conflict with each other.

Massaging optS LI into optS ${ }_{\text {ours }}$

$$
\text { optS }_{\text {ours }} \text { is optimal }
$$

Maintaining Loop Invariant

\rightarrow <exit Cond>
 codeB

Massaging optS LI $_{\text {II }}$ into optS ours Case 2

Massaging optS ${ }_{\text {LI }}$ into optS ${ }_{\text {ours }}$

Maintaining Loop Invariant

$\rightarrow<$ exit Cond> \square codeB

Clean up loose ends <loop-invariant> <exit Cond>
 codeC

<exit Cond> \square Alg commits to or reject each event. Has a solution S .

$\Rightarrow \exists$ opt sol consistent with these choices
S must be optimal.
codeC
\square Alg returns optS .

Running Time

Greedy algorithms are very fast because they only consider each object once.

Checking whether next event i conflicts with previously committed events requires only comparing it with the last such event.

Running Time

algorithm Scheduling $\left(\left\langle\left\langle s_{1}, f_{1}\right\rangle,\left\langle s_{2}, f_{2}\right\rangle, \ldots,\left\langle s_{n}, f_{n}\right\rangle\right\rangle\right)$
$\langle\boldsymbol{p r e}-\boldsymbol{c o n d}\rangle$: The input consists of a set of events.
\langle post-cond \rangle : The output consists of a schedule that maximizes the number
begin of events scheduled.
Sort the events based on their finishing times $f_{i} \longrightarrow \theta(n \log n)$
Commit $=\emptyset \quad \%$ The set of events committed to be in the schedule loop $i=1 \ldots n$ \% Consider the events in sorted order. $\longrightarrow \theta(n)$
if(event i does not conflict with an event in Commit) then
Commit $=$ Commit $\cup\{i\}$
end loop
return(Commit)
end algorithm

$$
\rightarrow T(n)=\theta(n \log n)
$$

Example 3: Minimum Spanning Trees

Minimum Spanning Trees

- Example Problem
- You are planning a new terrestrial telecommunications network to connect a number of remote mountain villages in a developing country.
- The cost of building a link between pairs of neighbouring villages (u, v) has been estimated: $w(u, v)$.
- You seek the minimum cost design that ensures each village is connected to the network.
- The solution is called a minimum spanning tree (MST).

Minimum Spanning Trees

The problem is defined for any undirected, connected, weighted graph.
The weight of a subset T of a weighted graph is defined as:
$w(T)=\sum_{(u, v \in T} w(u, v)$
Thus the MST is the spanning tree T that minimizes $w(T)$

Building the Minimum Spanning Tree

- Iteratively construct the set of edges A in the MST.
- Initialize A to $\}$
- As we add edges to A, maintain a Loop Invariant:
- A is a subset of some MST
- Maintain loop invariant and make progress by only adding safe edges.
- An edge (u, v) is called safe for A iff $A \cup(\{u, v\})$ is also a subset of some MST.

Finding a safe edge

- Idea: Every 2 disjoint subsets of vertices must be connected by at least one edge.
- Which one should we choose?

Some definitions

- A cut $(S, V-S)$ is a partition of vertices into disjoint sets S and $V-S$.
- Edge $(u, v) \in E$ crosses cut $(S, V-S)$ if one endpoint is in S and the other is in $V-S$.
- A cut respects a set of edges A iff no edge in A crosses the cut.
- An edge is a light edge crossing a cut iff its weight is minimum over all edges crossing the cut.

Minimum Spanning Tree Theorem

- Let
- A be a subset of some MST
- (S,V-S) be a cut that respects A
- (u, v) be a light edge crossing ($S, V-S$)
- Then
- (u, v) is safe for A.

Basis for a greedy algorithm

Proof

- Let G be a connected, undirected, weighted graph.
- Let T be an MST that includes A.
- Let $(S, V-S)$ be a cut that respects A.
- Let (u, v) be a light edge between S and $V-S$.
- If T contains (u, v) then we're done.
-_ Edge $\in T$
----- Edge $\notin T$

- Suppose T does not contain (u, v)
- Can construct different MST T^{\prime} that includes $A \cup(u, v)$
- The edge (u, v) forms a cycle with the edges on the path p from u to v in T.
- There is at least one edge in p that crosses the cut: let that edge be (x, y)
- (x, y) is not in A, since the cut ($S, V-S$) respects A.
- Form new spanning tree T^{\prime} by deleting (x, y) from T and adding (u, v).
- $w\left(T^{\prime}\right) \leq w(T)$, since $w(u, v) \leq w(x, y) \rightarrow$ T^{\prime} is an MST.
$-A \subseteq T^{\prime}$, since $A \subseteq T$ and $(x, y) \notin A \rightarrow$ $A \cup(u, v) \subseteq T^{\prime}$

- Thus (u, v) is safe for A.

Kruskal's Algorithm for computing MST

- Starts with each vertex being its own component.
- Repeatedly merges two components into one by choosing the light edge that crosses the cut between them.
- Scans the set of edges in monotonically increasing order by weight (greedy).

Kruskal's Algorithm: Loop Invariant

Let $A=$ solution under construction.
Let $E_{i}=$ the subset of i lowest-weight edges thus far considered
< loop-invariant >:
ヨ MST T :

1) $A \in T$,
2) $\forall(u, v) \in E_{i}$:
$(u, v) \in A$ or $(u, v) \notin T$

Kruskal's Algorithm: Example

Kruskal's Algorithm: Example

Kruskal's Algorithm: Example

Kruskal's Algorithm: Example

Kruskal's Algorithm: Example

Kruskal's Algorithm: Example

Kruskal's Algorithm: Example

Kruskal's Algorithm: Example

Kruskal's Algorithm: Example

Kruskal's Algorithm: Example

Kruskal's Algorithm: Example

Kruskal's Algorithm: Example

Kruskal's Algorithm: Example

Kruskal's Algorithm: Example

Finished!

Disjoint Set Data Structures

- Disjoint set data structures can be used to represent the disjoint connected components of a graph.
- Make-Set (x) makes a new disjoint component containing only vertex x.
- Union (x, y) merges the disjoint component containing vertex x with the disjoint component containing vertex y.
- Find-Set (x) returns a vertex that represents the disjoint component containing x.

Disjoint Set Data Structures

- Most efficient representation represents each disjoint set (component) as a tree.
- Time complexity of a sequence of m operations, n of which are Make-Set operations, is:
$O(m \times \alpha(n))$
where $\alpha(n)$ is Ackerman's function, which grows extremely slowly.

n	$\alpha(n)$
3	1
7	2
2047	3
10^{80}	4

Kruskal's Algorithm for computing MST

Kruskal(G,w)
$A=\varnothing$
for each vertex $v \in V[G]$
Make-Set(v)
sort $\mathrm{E}[\mathrm{G}]$ into nondecreasing order: $\mathrm{E}[1 . . . n]$
for $i=1$: n
< loop-invariant >:
\exists MST T:1)A $\in T$,

$$
\text { 2) } \forall(u, v) \in E[1 \ldots i-1]:(u, v) \in A \text { or }(u, v) \notin T
$$

$(u, v)=E[i]$
if Find-Set $(u) \neq$ Find $-\operatorname{Set}(v)$

$$
\begin{aligned}
& A=A \cup\{(u, v)\} \\
& \text { Union }(u, v)
\end{aligned}
$$

Running Time $=O($ (logE $)$
 $=O(E \log \mathrm{~V})$

return A

Prim's Algorithm for Computing MST

- Build one tree A
- Start from arbitrary root r
- At each step, add light edge connecting V_{A} to $V-V_{A}$ (greedy)

[Edges of A are shaded.]

Prim's Algorithm: Example

Finished!

Finding light edges quickly

- All vertices not in the partial MST formed by A reside in a minpriority queue.
- $\operatorname{Key}(v)$ is minimum weight of any edge $(u, v), u \in V_{A}$.
- Priority queue can be implemented as a min heap on $\operatorname{key}(v)$.
- Each vertex in queue knows its potential parent in partial MST by π [v].

Prim's Algorithm

```
\(\operatorname{PRIM}(V, E, w, r)\)
\(Q \leftarrow \emptyset\)
for each \(u \in V \quad\) 1. \(\exists\) MST \(T: A \in T\)
Let \(V_{A}=V-Q\)
<loop-invariant>:
    do \(k e y[u] \leftarrow \infty\)
        \(\pi[u] \leftarrow \mathrm{NIL}\)
        Insert \((Q, u)\)
2. \(\forall v \in Q\), if \(\pi[v] \neq\) NIL
    then \(k e y[v]=\) weight of light edge connecting \(v\) to \(V_{A}\)
\(\operatorname{Decrease-Key}(Q, r, 0) \quad \triangleright k e y[r] \leftarrow 0\)
while \(Q \neq \emptyset\)
    do \(u \leftarrow\) EXtract-Min \((Q)\)
        for each \(v \in \operatorname{Adj}[u]\)
            do if \(v \in Q\) and \(w(u, v)<k e y[v]\)
                then \(\pi[v] \leftarrow u\)
                \(\operatorname{DECREASE-KEY}(Q, v, w(u, v))\)
```

Let $A=\{(v, \pi[v]): v \in V-\{r\}-Q\}$

Prim's Algorithm

```
\(\operatorname{PRIM}(V, E, w, r)\)
\(Q \leftarrow \emptyset\)
for each \(u \in V\)
    do \(k e y[u] \leftarrow \infty\)
        \(\pi[u] \leftarrow \mathrm{NIL}\)
        Insert \((Q, u)\)
Decrease- \(\operatorname{Key}(Q, r, 0) \quad \triangleright k e y[r] \leftarrow 0)\)
while \(Q \neq \emptyset\)
```



```
        do \(u \leftarrow\) Extract-Min \((Q)\)
        for each \(v \in A d j[u] \longleftarrow O(\log V)\)
                            Executed |V| times
        do if \(v \in Q\) and \(w(u, v)<k e y[v] \quad\) Executed \(|E|\) times
            then \(\pi[v] \leftarrow u\)
                \(\operatorname{Decrease-Key}(Q, v, w(u, v)) O(\log V)\)
```


Running Time $=O(E \log V)$

Algorithm Comparison

- Both Kruskal's and Prim's algorithm are greedy.
- Kruskal's: Queue is static (constructed before loop)
- Prim's: Queue is dynamic (keys adjusted as edges are encountered)

