
Greedy Algorithms

Credits: Many of these slides were originally authored by Jeff Edmonds, York University. Thanks Jeff!

2

Optimization Problems

•  Shortest path is an example of an optimization problem:
we wish to find the path with lowest weight.

•  What is the general character of an optimization
problem?

3

Ingredients:

• Instances: The possible inputs to the problem.

• Solutions for Instance: Each instance has an exponentially large
set of valid solutions.

• Cost of Solution: Each solution has an easy-to-compute cost or
value.

Specification

• Preconditions: The input is one instance.

• Postconditions: A valid solution with optimal cost. (minimum
or maximum)

Optimization Problems

4

Greedy Solutions to Optimization Problems

Surprisingly, many important and practical
optimization problems can be solved this way.

Every two-year-old knows the greedy algorithm.

In order to get what you want,
just start grabbing what looks best.

5

Example 1: Making Change
Problem: Find the minimum # of quarters, dimes,
nickels, and pennies that total to a given amount.

6

The Greedy Choice

Commit to the object that looks the ``best''

Must prove that this locally greedy choice
does not have negative global consequences.

7

Instance: A drawer full of coins and an amount of change to return

25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢

 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢

 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢

 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢

Amount = 92¢

Solutions for Instance:
A subset of the coins in the drawer that total the amount

Making Change Example

8

Instance: A drawer full of coins and an amount of change to return

Solutions for Instance: A subset of the coins that total the amount.

25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢

 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢

 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢

 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢

Amount = 92¢

Cost of Solution: The number of coins in the solution = 14

Making Change Example

Goal: Find an optimal valid solution.

9

25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢

 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢

 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢

 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢

Amount = 92¢

Making Change Example

Greedy Choice:

Does this lead to an optimal # of coins?

Start by grabbing quarters until exceeds amount,
then dimes, then nickels, then pennies.

Cost of Solution: 7

Instance: A drawer full of coins and an amount of change to return

10

Hard Making Change Example

Greedy Choice: Start by grabbing a 4-cent coin.

Problem: Find the minimum # of
4, 3, and 1 cent coins to make up 6 cents.

Consequences:
 4+1+1 = 6 mistake
 3+3=6 better

Greedy Algorithm does not work!

11

When Does It Work?
•  Greedy Algorithms: Easy to understand and to code, but do they
work?

•  For most optimization problems, all greedy algorithms tried do not
work (i.e. yield sub-optimal solutions)

•  But some problems can be solved optimally by a greedy algorithm.

•  The proof that they work, however, is subtle.

•  As with all iterative algorithms, we use loop invariants.

12

The algorithm chooses the “best” object
from amongst those not considered so far
and either commits to it or rejects it.

Define Step

Another object considered

Make Progress

79 km 75 km

Exit

All objects have been considered Exit

Exit Condition

13

Designing a Greedy Algorithm

¬

< >

<

< >

while exit condition

pre-condition

lo
loop

end loop

CodeA

CodeB

C

op-invariant>

post-condit
deC

ion
o

14

We have not gone wrong.
There is at least one optimal solution
consistent with the choices made so far.

Loop Invariant

15

Initially no choices have been made and
hence all optimal solutions are consistent
with these choices.

<preCond>
codeA

<loop-invariant>

Establishing Loop Invariant

Establishing the Loop Invariant

16

Maintaining Loop Invariant
< < >+ →>loop-invarian CodeBMus t loot s p-ihow that nvar iant

< > ∃ LILI : optimal solution consistent with choices soOptS far

Commit to or reject next CodeB : object

∃< > Ours optimal soln consistent with prev objects + neLI : w obOptS ject

Ours LImay or may not be the same asOptS Op: tS ! Note

Proof must massage optSLI into optSours and prove that optSours:

•  is a valid solution
•  is consistent both with previous and new choices.
•  is optimal

17

Algorithm:
commits to
or rejects
next best
object

His actions are
not part of the
algorithm

The algorithm
and prover do not
know optSLI.

Prover:
Proves LI is
maintained.

Three Players

Fairy God Mother:
Holds the hypothetical
optimal sol optSLI.

optSLI

18

Proving the Loop Invariant is Maintained

•  We need to show that the action taken by the algorithm
maintains the loop invariant.

•  There are 2 possible actions:
–  Case 1. Commit to current object

–  Case 2. Reject current object

Case 1. Committing to Current Object

20

I instruct how to massage
optSLI into optSours so that it
is consistent with previous &

new choice.

Massaging optSLI into optSours
25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢

 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢

 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢

 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢

Amount = 92¢

I have committed to
these coins.

I commit to keeping
another 25¢

I hold optSLI witnessing that
there is an opt sol consistent

with previous choices.

I hold optSours witnessing that
there is an opt sol consistent

with previous & new choices.

optSLI

21

I know that her optSLI
is consistent with these choices.

As Time Goes On
25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢

 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢

 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢

 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢

Amount = 92¢

I keep making more
choices.

I always hold an opt sol optSLI
but one that keeps changing.

optSLI

Hence, I know more and more of optSLI
In the end, I know it all.

optSLI

Case 1A.
The object we commit to is already part of optSLI

partial
solution

new
object

oursoptS partial
solution

new
object

23

If it happens to be the case
that the new object selected is
consistent with the solution
held by the fairy godmother,

then we are done.

Massaging optSLI into optSours

25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢

 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢

 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢

 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢

Amount = 92¢ optSLI

Case 1B.
The object we commit to is not part of optSLI

optSLI
partial

solution

new
object

25

Case 1B. The object we commit to is not
part of optSLI

•  This means that our partial solution is not consistent with optSLI.

•  The Prover must show that there is a new optimal solution optSours
that is consistent with our partial solution.

•  This has two parts
–  All objects previously committed to must be part of optSours.

–  The new object must be part of optSours.

optSLI
partial

solution oursoptS

new
object

26

Case 1B. The object we commit to is not
part of optSLI

•  Strategy of proof: construct a consistent optSours by replacing one
or more objects in optSLI (but not in the partial solution) with another
set of objects that includes the current object.

•  We must show that the resulting optSours is still
–  Valid

–  Consistent

–  Optimal

optSLI partial
solution

current
object swap

27

Case 1B. The object we commit to is not
part of optSLI

•  Strategy of proof: construct a consistent optSours by replacing one
or more objects in optSLI (but not in the partial solution) with another
set of objects that includes the current object.

•  We must show that the resulting optSours is still
–  Valid

–  Consistent

–  Optimal

optSLI partial
solution

new
object swap

oursoptS

28

Massaging optSLI into optSours

optSLI 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢

 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢

 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢

 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢

Amount = 92¢

Replace
• A different 25¢ • Alg’s 25¢

With

29

Massaging optSLI into optSours

optSLI 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢

 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢

 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢

 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢

Amount = 92¢

Replace
• A different 25¢ • Alg’s 25¢

With

• 3×10¢ • Alg’s 25¢ + 5¢

30

Massaging optSLI into optSours

optSLI 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢

 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢

 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢

 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢

Amount = 92¢

Replace
• A different 25¢ • Alg’s 25¢

With

• 3×10¢

• 2×10¢ + 1×5¢
• Alg’s 25¢ + 5¢

• Alg’s 25¢

31

Massaging optSLI into optSours

optSLI 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢

 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢

 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢

 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢

Amount = 92¢

Replace
• A different 25¢ • Alg’s 25¢

With

• 3×10¢

• 2×10¢ + 1×5¢
• Alg’s 25¢ + 5¢

• 1×10¢ + 3×5¢
• Alg’s 25¢

• Alg’s 25¢

32

Massaging optSLI into optSours

optSLI 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢

 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢

 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢

 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢

Amount = 92¢

Replace
• A different 25¢ • Alg’s 25¢

With

• ?? + 5×1¢

• 3×10¢

• 2×10¢ + 1×5¢
• Alg’s 25¢ + 5¢

• 1×10¢ + 3×5¢
• Alg’s 25¢

• Alg’s 25¢

• Alg’s 25¢

33

#Coins #Coins
1Q 1 1Q 1
3D 3 1Q 1N 2
2D 1N 3 1Q 1
2D 5P 7 1Q 1
1D 3N 4 1Q 1
1D 2N 5P 8 1Q 1
1D 1N 10P 12 1Q 1
1D 15P 16 1Q 1
5N 5 1Q 1
4N 5P 9 1Q 1
3N 10P 13 1Q 1
2N 15P 17 1Q 1
1N 20P 21 1Q 1
25P 25 1Q 1

OursoptS

Must Consider All Cases

•  Note that in all cases our new solution optSours is:
–  Valid: the sum is still correct

–  Consistent with our previous choices (we do not alter these).

–  Optimal: we never add more coins to the solution than we delete

LIoptS

34

optSLI
Done

optSours

Massaging optSLI into optSours

She now has something.
We must prove that it is

what we want.

35

optSours
optSours is valid

optSLI was valid and we
introduced no new conflicts.

Massaging optSLI into optSours

Total remains unchanged.

Replace
•  A different 25¢ • Alg’s 25¢

With

• ?? + 5×1¢

• 3×10¢

• 2×10¢ + 1×5¢

• Alg’s 25¢ + 5¢

• 1×10¢ + 3×5¢
• Alg’s 25¢

• Alg’s 25¢

36

optSours is consistent

Massaging optSLI into optSours

optSLI was consistent with
previous choices and we made
it consistent with new.

25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢

 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢

 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢

 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢

Amount = 92¢

optSours

37

optSours is optimal
We do not even know the
cost of an optimal solution.

Massaging optSLI into optSours

optSLI was optimal and
optSours cost (# of coins) is not bigger.

• Alg’s 25¢
With

• ?? + 5×1¢

• 3×10¢

• 2×10¢ + 1×5¢

• Alg’s 25¢ + 5¢

• 1×10¢ + 3×5¢
• Alg’s 25¢

• Alg’s 25¢

optSours

Replace
•  A different 25¢

38

Committing to Other Coins

•  Similarly, we must show that when the algorithm selects
a dime, nickel or penny, there is still an optimal solution
consistent with this choice.

dime
LI OursoptS optS+⎯⎯⎯→

nickel
L OursIo tSptS op+⎯⎯⎯⎯→

penny
I OursLo SptS opt+⎯⎯⎯⎯→

39

Example: Dimes

–  We only commit to a dime when less than 25¢ is unaccounted for.

–  Therefore the coins in optSLI that this dime replaces have to be
dimes, nickels or pennies.

#Coins #Coins
1D 1 1D 1
2N 2 1D 1
1N 5P 6 1D 1
10P 10 1D 1

OursoptSLIoptS

40

Committing to Other Coins

•  We must consider all possible coins we might select:
–  Quarter: Swap for another quarter, 3 dimes (with a nickel) etc.

–  Dime: Swap for another dime, 2 nickels, 1 nickel + 5 pennies etc.

–  Nickel: Swap for another nickel or 5 pennies.

–  Penny: Swap for another penny.

41

optSours is valid

optSours is consistent

optSours is optimal

 optSours

Massaging optSLI into optSours Case 1

¬<exit Cond>
codeB

Exit Maintaining Loop Invariant

optSours

Case 2. Rejecting the Current Object

43

Rejecting the Current Object

Strategy of Proof:

LI1. There is at least one optimal solution consistent with previous choioptS ces.

2. Any optimal solution consistent with previous choices cannot include current object.

LI3. Therefore cannot include current objoptS ect.

44

Rejecting an Object

•  Making Change Example:
–  We only reject an object when including it would make us

exceed the total.

–  Thus optSLI cannot include the object either.

45

optSLI I hold optSLI witnessing that
there is an opt sol consistent

with previous choices.

I must make sure that what the Fairy
God Mother has is consistent with this

new choice.

Massaging optSLI into optSours Case 2
25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢

 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢

 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢

 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢

Amount = 92¢

I reject the next 25¢

46

The Algorithm has
92¢-75¢ = 17¢ < 25¢ unchoosen.

Massaging optSLI into optSours

25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢

 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢

 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢

 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢

Amount = 92¢ optSLI

Fairy God Mother must
have < 25¢ that I don’t know about.

optSLI does not contain the 25¢ either.

47

<loop-invariant>
<exit Cond>
codeC

<postCond> Exit

Clean up loose ends

Alg has committed to or rejected each object.
Has yielded a solution S.

<exit Cond>

 ∃ opt sol consistent with these choices.

S must be optimal.

Alg returns S .
<postCond>

codeC

48

Making Change Example

Greedy Choice: Start by grabbing quarters until exceeds
amount, then dimes, then nickels, then pennies.

Problem: Find the minimum # of quarters, dimes,
nickels, and pennies that total to a given amount.

Does this lead to an optimal # of coins?

Yes

49

Hard Making Change Example

Greedy Choice: Start by grabbing a 4 coin.

Problem: Find the minimum # of
4, 3, and 1 cent coins to make up 6 cents.

50

I will now instruct how to
massage optSLI into optSours so

that it is consistent with
previous & new choice.

Massaging optSLI into optSours

4¢ 4¢ 4¢ 4¢ 4¢ 4¢ 4¢ 4¢ 4¢ 4¢

 3¢ 3¢ 3¢ 3¢ 3¢ 3¢ 3¢ 3¢ 3¢ 3¢

 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢

Amount = 6¢
optSLI

I commit to keeping a 4¢

I hold optSLI.

Oops!

51

Hard Making Change Example

Greedy Choice: Start by grabbing a 4 coin.

Problem: Find the minimum # of
4, 3, and 1 cent coins to make up 6 cents.

Consequences:
 4+1+1 = 6 mistake
 3+3=6 better

Greedy Algorithm does not work!

52

Analysing Arbitrary Systems of Denominations

•  Suppose we are given a system of coin denominations. How do we
decide whether the greedy algorithm is optimal?

•  It turns out that this problem can be solved in O(D3) time, where D =
number of denominations (e.g., D=6 in Canada) (Pearson 1994).

53

Designing Optimal Systems of Denominations

In Canada, we use a 6 coin system:
1 cent, 5 cents, 10 cents, 25 cents, 100 cents and 200 cents.

Assuming that , the change to be made, is uniformly distributed
over {1,...,499}, the expected number of coins per transaction is 5.9.

N

The optimal (but non-greedy) 6-coin systems are (1,6,14,62,99,140) and
(1,8,13,69,110,160), each of which give an expected 4.67 coins per transaction.

The optimal 6-coin systems are (1,3,8,26,64,{202 or 203 or 204})
and (1,3,10,25,79,{195 or 196 or 197}) with an expected cost of 5.036
coins per transaction.

greedy

54

Summary

•  We must prove that every coin chosen or rejected in
greedy fashion still leaves us with a solution that is
–  Valid

–  Consistent

–  Optimal

•  We prove this using an inductive ‘cut and paste’ method.

•  We know from the previous iteration we have a partial
solution Spart that is part of some complete optimal
solution optSLI.

optSLI
partial

solution

new
object

55

Summary
•  Selecting a coin: we show that we can replace a subset

of the coins in optSLI\ Spart with the selected coin (+
perhaps some additional coins).
–  Valid because we ensure that the trade is fair (sums are equal)

–  Consistent because we have not touched Spart

–  Optimal because the number of the new coin(s) is no greater
than the number of coins they replace.

•  Rejecting a coin: we show that we only reject a coin
when it could not be part of optSLI.

optSLI partial
solution

new
object swap

oursoptS

Example 2: Job/Event Scheduling

57

Ingredients:

• Instances: Events with starting and finishing times

 <<s1,f1>,<s2,f2>,… ,<sn,fn>>.

• Solutions: A set of events that do not overlap.

• Value of Solution: The number of events scheduled.

• Goal: Given a set of events, schedule as many as possible.

• Example: Scheduling lectures in a lecture hall.

The Job/Event Scheduling Problem

58

Possible Criteria for Defining “Best”

The Shortest Event

Counter Example

Does not book the room
for a long period of time.

Motivation:

Optimal
Schedule first

Optimal

Greedy Criterion:

59

Possible Criteria for Defining “Best”

The Earliest Starting Time

Counter Example

Gets room in use as early as possible Motivation:

Optimal
Schedule first

Optimal

Greedy Criterion:

60

Possible Criteria for Defining “Best”

Conflicting with the Fewest Other Events

Counter Example

Leaves many that can still be scheduled. Motivation:

Schedule first
Optimal

Optimal

Greedy Criterion:

61

Possible Criteria for Defining “Best”

Earliest Finishing Time
Schedule the event that will
free up your room for someone
else as soon as possible.

Motivation:
Greedy Criterion:

62

The Greedy Algorithm

63

Massaging optSLI into optSours

optSLI

Start by adding new event i.

Delete events conflicting with job i.

64

Massaging optSLI into optSours

optSLI

optSLI was valid and we
removed any new conflicts.

optSours is valid

65

Massaging optSLI into optSours

optSLI

optSLI was consistent with our prior choices.
We added event i.
Events in Commit don’t conflict with event i
and hence were not deleted.

optSours is consistent with our choices.

66

Massaging optSLI into optSours

optSLI

optSLI was optimal.
If we delete at most one event
then optSours is optimal too.

optSours is optimal

67

Massaging optSLI into optSours

optSLI

Only one in optSLI.

Deleted at most one event j

j

i<j

⇒ j runs at time fi.
Two such j conflict with each other.

j’

[j conflicts with i] ⇒ sj ≤ fi

⇒ fi ≤ fj

68

optSLI

optSours

optSours is valid

optSours is consistent

optSours is optimal

 optSours

Massaging optSLI into optSours Case 1

¬<exit Cond>
codeB

Exit Maintaining Loop Invariant

69

optSLI
I hold optSLI witnessing that there

is an opt sol consistent with
previous choices.

I reject next event i.

Massaging optSLI into optSours Case 2

Event i conflicts with events committed
to so it can’t be in optSLI either.

70

optSLI

Massaging optSLI into optSours

¬<exit Cond>
codeB

Exit Maintaining Loop Invariant

71

<loop-invariant>
<exit Cond>
codeC

<postCond> Exit

Clean up loose ends

Alg commits to or reject each event.
Has a solution S.

<exit Cond>

 ∃ opt sol consistent with these choices.
S must be optimal.

Alg returns optS .

<postCond>

codeC

72

Running Time
Greedy algorithms are very fast because they only
consider each object once.

Checking whether next event i conflicts with
previously committed events requires
only comparing it with the last such event.

73

Running Time

() (log)T n n nθ→ =

(log)n nθ

()nθ

Example 3: Minimum Spanning Trees

75

Minimum Spanning Trees
•  Example Problem

–  You are planning a new terrestrial telecommunications network to
connect a number of remote mountain villages in a developing country.

–  The cost of building a link between pairs of neighbouring villages (u,v)
has been estimated: w(u,v).

–  You seek the minimum cost design that ensures each village is
connected to the network.

–  The solution is called a minimum spanning tree (MST).

76

Minimum Spanning Trees

The weight of a subset of a weighted graph is defined as:T

(,)
() (,)

u v T
w T w u v

∈

= ∑

Thus the MST is the spanning tree that minimizes ()T w T

The problem is defined for any undirected, connected, weighted graph.

77

Building the Minimum Spanning Tree
•  Iteratively construct the set of edges A in the MST.

•  Initialize A to {}

•  As we add edges to A, maintain a Loop Invariant:
–  A is a subset of some MST

•  Maintain loop invariant and make progress by only
adding safe edges.

•  An edge (u,v) is called safe for A iff A∪({u,v}) is also
a subset of some MST.

78

Finding a safe edge

•  Idea: Every 2 disjoint subsets of vertices must be connected by
at least one edge.

•  Which one should we choose?

79

Some definitions
•  A cut (S,V-S) is a partition of vertices into disjoint sets

S and V-S.

•  Edge (u,v)∈E crosses cut (S, V-S) if one endpoint is
in S and the other is in V-S.

•  A cut respects a set of edges A iff no edge in A
crosses the cut.

•  An edge is a light edge crossing a cut iff its weight is
minimum over all edges crossing the cut.

A

80

Minimum Spanning Tree Theorem
•  Let

–  A be a subset of some MST

–  (S,V-S) be a cut that respects A

–  (u,v) be a light edge crossing (S,V-S)

•  Then
–  (u,v) is safe for A.

A

Basis for a greedy algorithm

81

Proof
•  Let G be a connected, undirected, weighted graph.

•  Let T be an MST that includes A.

•  Let (S,V-S) be a cut that respects A.

•  Let (u,v) be a light edge between S and V-S.

•  If T contains (u,v) then we’re done.

u

v

S

V - S

Edge T∈

Edge T∉

82

u
x

v
y

S

V - S

•  Suppose T does not contain (u,v)
–  Can construct different MST T' that

includes A∪(u,v)

–  The edge (u,v) forms a cycle with the
edges on the path p from u to v in T.

–  There is at least one edge in p that
crosses the cut: let that edge be (x,y)

–  (x,y) is not in A, since the cut (S,V-S)
respects A.

–  Form new spanning tree T' by
deleting (x,y) from T and adding
(u,v).

–  w(T') ≤ w(T), since w(u,v) ≤ w(x,y)
T' is an MST.

–  A ⊆ T', since A ⊆ T and (x,y)∉A
A∪(u,v) ⊆ T'

–  Thus (u,v) is safe for A.

p

83

Kruskal’s Algorithm for computing MST

•  Starts with each vertex being its own component.

•  Repeatedly merges two components into one by
choosing the light edge that crosses the cut between
them.

•  Scans the set of edges in monotonically increasing
order by weight (greedy).

84

Kruskal’s Algorithm: Loop Invariant

Let solution under construction.
Let the subset of lowest-weight edges thus f

loop-invariant :
 MST :

1) ,
2) (,

ar considered

) :
 (,) (,)

i

i

T
A T
u v E
u v A o

A
E

r u v T

i
=

< >

∃

∈

∀

=

∈

∈ ∉

85

Kruskal’s Algorithm: Example

86

Kruskal’s Algorithm: Example

87

Kruskal’s Algorithm: Example

88

Kruskal’s Algorithm: Example

89

Kruskal’s Algorithm: Example

90

Kruskal’s Algorithm: Example

91

Kruskal’s Algorithm: Example

92

Kruskal’s Algorithm: Example

93

Kruskal’s Algorithm: Example

94

Kruskal’s Algorithm: Example

95

Kruskal’s Algorithm: Example

96

Kruskal’s Algorithm: Example

97

Kruskal’s Algorithm: Example

98

Kruskal’s Algorithm: Example

Finished!

99

Disjoint Set Data Structures

•  Disjoint set data structures can be used to represent the
disjoint connected components of a graph.

•  Make-Set(x) makes a new disjoint component containing
only vertex x.

•  Union(x,y) merges the disjoint component containing
vertex x with the disjoint component containing vertex y.

•  Find-Set(x) returns a vertex that represents the disjoint
component containing x.

100

Disjoint Set Data Structures
•  Most efficient representation represents each disjoint set

(component) as a tree.

•  Time complexity of a sequence of m operations, n of
which are Make-Set operations, is:

(())O m nα×

where () is Ackerman's function, which grows extremely slowly.nα

80

()
3 1
7 2

2047 3
10 4

n nα

101

Kruskal’s Algorithm for computing MST

Running Time = O(ElogE)
= O(ElogV)

Kruskal(,)

for each vertex []
Make-Set(v)

sort E[G] into nondecreasing order:

loop-invariant :
 MST :1)

 [1...]
for 1:

(,) []
if Find-Set() Fi

,
2) (,) [1... 1]: (,) ,

n

()

G w
A

v V G

E n
i n

T A T
u v E i u v A or u v

v i
T

u E
u

=∅

∈

=

=

< >

∃ ∈

∀ −

≠

∈ ∈ ∉

d-Set()
{(,)}

Union(,)
return

v
A A u v

u v
A

= ∪

102

Prim’s Algorithm for Computing MST
•  Build one tree A

•  Start from arbitrary root r

•  At each step, add light edge connecting VA to V- VA
(greedy)

103

Prim’s Algorithm: Example

104

Prim’s Algorithm: Example

105

Prim’s Algorithm: Example

106

Prim’s Algorithm: Example

107

Prim’s Algorithm: Example

108

Prim’s Algorithm: Example

109

Prim’s Algorithm: Example

110

Prim’s Algorithm: Example

111

Prim’s Algorithm: Example

Finished!

112

Finding light edges quickly

•  All vertices not in the partial MST formed by A reside in a min-
priority queue.

•  Key(v) is minimum weight of any edge (u,v), u∈ VA.

•  Priority queue can be implemented as a min heap on key(v).

•  Each vertex in queue knows its potential parent in partial MST by π
[v].

113

Prim’s Algorithm
Let {(, []) : - { } - }
Let
<loop-invariant>:
1. MST :
2. v Q, if [] NIL

then [] weight of light edge connecting to

A

A

A v v v V r Q
V V Q

T A T
v
key v v V

π

π

= ∈

= −

∃ ∈

∀ ∈ ≠

=

114

Prim’s Algorithm

()O V

Executed | | timesV
(log)O V

Executed |E | times

(log)O V

Running Time = (log)O E V

115

Algorithm Comparison

•  Both Kruskal’s and Prim’s algorithm are greedy.

–  Kruskal’s: Queue is static (constructed before loop)

–  Prim’s: Queue is dynamic (keys adjusted as edges are
encountered)

