Reduciblility and
NP-Completeness



Computational Complexity Theory

« Computational Complexity Theory is the study of
how much of a given resource (such as time, space,
parallelism, algebraic operations, communication) is
required to solve important problems.



Classification of Problems

* Q. Which problems will we be able to solve in practice?

* A working definition. [Cobham 1964, Edmonds 1965,
Rabin 1966] Those with polynomial-time algorithms.

Yes Probably no
Shortest path Longest path
Matching 3D-matching
Min cut Max cut
2-SAT 3-SAT
Planar 4-color Planar 3-color
Bipartite vertex cover Vertex cover
Primality testing Factoring




Tractable Problems

« We have generally studied tractable problems (solvable

iIn polynomial time).

Algorithm design patterns.
— Greed.

— Divide-and-conquer.

— Dynamic programming.

— Duality.

Examples.

O(n log n) activity scheduling.
O(n log n) merge sort.

O(n log n) activity scheduling with profits.
O(n

3) bipartite matching.



Intractable Problems

* There are other problems that provably require
exponential-time.
« Examples:

— Given a Turing machine, does it halt in at most k steps on any
finite input?

— Given a board position in an n-by-n generalization of chess, can
black guarantee a win?



Impossible Problems

« There are other problems that cannot be solved by any
algorithm.



The Halting Problem

« The halting problem is a particular decision problem:

— Given a description of a program and a finite input, decide
whether the program will halt or run forever on that input.

* A general algorithm to solve the halting problem for all

possible program-input pairs cannot exist: The halting
problem is undecidable.



NP Completeness

« Bad news. Huge number of fundamental problems have
defied classification for decades.

« Some good news. Using the technique of reduction, we

can show that these fundamental problems are
"computationally equivalent" and appear to be different

manifestations of one really hard problem.



Optimization Problems

Ingredients:
*Instances: The possible inputs to the problem.

*Solutions for Instance: Each instance has an
exponentially large set of solutions.

*Cost of Solution: Each solution has an easy to
compute cost or value.



Optimization Problems

Specification of an Optimization Problem

*Preconditions: The input 1s one instance.

*Postconditions:
The output 1s one of the valid solutions for this

instance with optimal cost.
(minimum or maximuin)

Eg: Given graph G, find biggest clique.
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Non-Deterministic
Poly-Time_Decision Problems (INP)

*An optimization problem

*Each solution 1s either valid or not (no cost)
*The output 1s
*Yes, 1t has an valid solution.
*No, it does not
the solution 1s not returned
*Eg: Given graph and integer <G.,k>,
does G have a clique of size k?

11



Non-Deterministic
Poly-Time Decision Problems (NP)

*Key: Given
an 1nstance | (=<G,k>)
eand a solution S (= subset of nodes)
there 1s a poly-time alg Valid(L,S) to test
whether or not S 1s a valid solution for I.
*Poly-time 1n |I| not 1n |S|.

Not Valid
Valid

=4 12



Which are more alike?

Network  Bipartite Graph Circuit
C Flow MatchingJ Q)louring SatisﬁabilitJy
Y Y
Polynomial time Best known algorithm
algorithm exponential time
Similar structure Similar structure

Non-Deterministic
Poly Time
Complete

13



Reducibility



A Graph Named “"Gadget”
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K-COLORING

« A k-coloring of a graph is an assignment of one color to
each vertex such that:

— No more than k colors are used

— No two adjacent vertices receive the same color

« A graph is called k-colorable iff it has a k-coloring

16



Course Scheduling Problem

Given the courses students want to take and
the time slots available, schedule courses to
minimize number of conflicts (Avoid
scheduling two courses at the same time 1f a
student wants to take both).

17



K-CRA Problem:

lour each node.

Nodes with lines between them
must have different colours.

« Given a graph G and ak,
find a way to colour G with k
colours.

18



Two Different Problems

Schedule each course. Colour each node.
Courses that conflict __  Nodes with lines
can't be at same time. between them must

have different colours.

Two problems that are cosmetically different,
but substantially the same

19



Problems are the Same!

Schedule each course. Colour each node.

Courses that conflict can’t Nodes with lines between

be at same time. ~ them must have different
colours.

course = hode

can’t be scheduled

o St S =~  |ine between them

scheduled time = colour

Science_ ” Math

Ipm Mon Q? 3pm Fri
Ipm Mon English

20



A CRA Question!

 |s Gadget 2-colorable?

No: it contains a triangle!



A

RA Question!

 |s Gadget 3-colorable?

Yes!

22



2 CRA S

* Given a graph G, how do we
decide If it can be 2-colored?

PERSPTIRATION; BRUTE FORCE:
Try out all 2" ways of 2 coloring 6.

23



TnsprRarTon |
A FAsT ALLGORITHAM
Gzven A Graenw G

o CoLon oONE  NODE  OF EACH
CONNELTED ComPoneEnT oOF G BUE,

o WHILE S0mME  CoLoREY MODE TV

HAS SOME UNCOLORED
NVEIGHBORS Do

COLOR UNCOLORED NETEMBORS
THE CoOLOR  DIFFERENT FROM
THE CoLorR OF WV

A DIFFERENT COLO&’ ouUTPYUT p
"YES, HERE I5 #A VALZ) A~ COLORING ...

ATHBRWTSE  ouTPLT SOMY T
L5 NOU Po9sZBLE To &A=~ COLOR G



Co&R€¢T~ess OF THE  ALGORITHM

A ¢cyecLé ITs A SEMA&L OF

VEetZecES Vi, VR, V3, v, Vi WaITH
EDGES BETWEEN V| and Vy, V3 4w
Vs, Vg &nD Vg y -o0 0 Knvg‘\l‘

L D

CLazM: A GRAPH CAn  BE o COLORED
IFf T CONTAINS NO
CYCLE WITH Anv O
NUmMBER  OF NODESS.

ODN CYCLE =P NO - COLOING /

NO o0n CYeLE =P ALGORTIAM  MODVLES
o = COLORING

_®



PLOT SUMMARY

We SEEk AV  opIECT
(&-CoLoRTNG OF G)

FROM  AMONG A HUGE  SPACE
Ov POSSIBILLT TIEES

"
a ASSTCNMENTS OF o Coco&s}
TO N VERTICES O 6

PERSPZRATION, I.E, BRUTE
FORCE  SEARcH’ TarEs Too  Lowe

(2(2") Tzme )

S0 WE A USE LN ISPIRQTION
TNSTEAD |
Ouk FAST ALGORTTHM  fTw b;\

A o CoLoING TN Tamg
| Lz~EAR I~ THE  AumMBt O
\ €DGES + NODES '



3 CRA S

* Given a graph G, what is a fast
algorithm to decide if it can be 3-
colored?

27



Let's consider a completely different
problem.



k-CLIQUES

* A k-cligue is a set of k nodes with all k(k-1)/2 possible
edges between them.

o O0—0
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This graph contains a 4-clique
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Given an n-node graph G and a number
K, how can you decide if G contains a k-
clique?

« PERSPIRATION: Try out all n-choose-k possible
locations for the k clique (

n n! o
= possibilities
k| kl(n-k)!

e.g., k=3—-0(n°)
In general, ©(n")

2?7 27

* INSPIRATION:

31



OK, how about a slightly different
problem?



INDEPENDENT SET

 An independent set is a set of vertices with no edges

between them.

This graph

contains an

independent
set of size 3.

33



Given an n-node graph G and a number
K, how can you decide if G contains an
independent set of size k?

« PERSPIRATION: Try out all n-choose-k possible
locations for independent set

* INSPIRATION:

2 ? PR

34



One more completely different problem



Combinational Circuits

 AND, OR, NOT, gates wired together with no feedback
allowed (acyclic).

36



Logic Gates

Or

LD

And

Not

-

Ay -
P

(8]

-~
p 3l [ —
-
vp.. S = O -
-~
|00 ™
=
~ o = —
=|loco = —

(c)

(b)

(a)
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I'CUI

Example C
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CIRCUIT-SATISFIABILITY
(decision version)

* Given a circuit with n-inputs and one
output, is there a way to assign 0-1 values
to the input wires so that the output value

Is 1 (true)?

39



CIRCUIT-SATISFIABILITY
(search version)

* Given a circuit with n-inputs and one
output, find an assignment of 0-1 values to
the input wires so that the output value is 1
(true), or determine that no such
assignment exists.

40



Satisfiable Circuit Example

41



Satisfiable?

42



Given a circuit, is it satisfiable?

« PERSPIRATION: Try out all 2" assignments

* INSPIRATION:

43



We have seen 4 problems:
coloring, clique,
independent set, and
circuit SAT.

N They all have a common
story: A large space of
possibilities only a tiny

fraction of which satisfy
the constraints. Brute
force takes too long, and
no feasible algorithm is
known.



CLIQUE / INDEPENDENT SET

* Two problems that are
cosmetically different, but
substantially the same

45



Complement Of G

« Given a graph G, let G', the complement
of G, be the graph obtained by the rule
that two nodes in G™ are connected if and
only if the corresponding nodes of G are
not connected

46



Example

3-Clique Independent set of size 3

47



Reduction

— Suppose you have a method for solving the k-clique problem.

— How could it be used to solve the independent set problem?

48



Or what if you have an Oracle?

or-a-cle
Pronunciation: 'or-&-k&l, 'ar-
Function: noun

Etymology: Middle English, from Middle French, from Latin oraculum, from orare to
speak

1 a : a person (as a priestess of ancient Greece) through whom a deity is believed to
speak

2 a : a person giving wise or authoritative decisions or opinions

49



Let G be an n-node graph.

BUILD: S
Indep. GIVEN:

Set Clique
Oracle Oracle

50




Let G be an n-node graph.

BUILD:
Clique
Oracle

51

GIVEN:
Indep.
Set

Oracle




N\

Thus, we can quickly
reduce cligue problem
to an independent set

problem and vice versa.

There is a fast method
for one if and only if
there is a fast method
for the other.



N\

Given an oracle for
circuit SAT, how can
you quickly solve
3-colorability?

53



V. (X,Y)

« Let V, be a circuit that takes an n-node graph X and an
assignment Y of colors to these nodes, and verifies that Y is a
valid 3-colouring of X. i.e., V(X,Y)=1iff Y is a 3-colouring of X.

« X is expressed as an n-choose-2 bit sequence. Y is expressed
as a 2n bit sequence.

« Given n, we can construct V, in time O(n?).
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Let G be an n-node graph.

GIVEN:
SAT

Oracle Oracle

95




N\

Given an oracle for
circuit SAT, how can
you quickly solve
k-clique?
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Vn,k(X’Y)

« Let V, be a circuit that takes an n-node graph X and a subset of
nodes Y, and verifies that Y is a k-clique X. l.e., V (X,Y)=1iff Y
is a k-clique of X.

« X is expressed as an n choose 2 bit sequence. Y is expressed
as an n bit sequence.

 Given n, we can construct V,  in time O(n?).

Y



Let G be an n-node graph.

BUILD:
Clique

Oracle

58

GIVEN:
SAT

Oracle




N\

Given an oracle for
3-colorability, how
can you quickly
solve
circuit SAT?

59



Reducing Circuit-SAT to 3-Colouring

« Goal: map circuit to graph that is 3-colourable only if
circuit is satisfiable.

 How do we represent a logic gate as a 3-colouring
problem?

60



X and Y and Output
are boolean variables
in circuit.

Without loss of
generality, map truth
values to colours, e.g.

0 € red
1 &> green

Add base colour for
encoding purposes, e.g.
61 blue.




62

Note that in a valid 3-
colouring, this node
cannot have the same
colour as X, Y or
Output.

Thus, without loss of
generality, we can
assign it the base
colour, blue.









Now build a truth table
for (X, Y, Output).

What if X=Y=0?

65



Output

Example

Now build a truth table
for (X, Y, Output).

What if X=Y=0?
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Output

Example

Now build a truth table
for (X, Y, Output).

What if X=Y=0?

67



Output

Example

Now build a truth table
for (X, Y, Output).

What if X=Y=0?

68



Output

Example

Thus (X,Y)=0->Output=0

69















Output

Example

Thus Output=0->X=Y=0.
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End of Final Lecture



What type of gate is this?

B

A NOT gatel

Output

77






Satisfiability of this circuit

3-colorability of this graph



Let C be an n-input circuit.

Graph composed of
gadgets that mimic the

gates in C

BUILD:
SAT

Oracle

GIVEN:
3-color

Oracle

80




Formal Statement

* There is a polynomial-time function f such that:

« C is satisfiable <-> f(C) is 3 colorable
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4 Problems All Equivalent

If you can solve one quickly then you can solve them all
quickly:

Circuit-SAT
Clique
Independent Set
3 Colorability

82
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