
Reducibility and
NP-Completeness

2

Computational Complexity Theory

•  Computational Complexity Theory is the study of
how much of a given resource (such as time, space,
parallelism, algebraic operations, communication) is
required to solve important problems.

3

Classification of Problems

•  Q. Which problems will we be able to solve in practice?

•  A working definition. [Cobham 1964, Edmonds 1965,
Rabin 1966] Those with polynomial-time algorithms.

Yes Probably no
Shortest path Longest path

Min cut Max cut
2-SAT 3-SAT

Matching 3D-matching

Primality testing Factoring

Planar 4-color Planar 3-color
Bipartite vertex cover Vertex cover

4

Tractable Problems

•  We have generally studied tractable problems (solvable
in polynomial time).

•  Algorithm design patterns. Examples.

–  Greed. O(n log n) activity scheduling.

–  Divide-and-conquer. O(n log n) merge sort.

–  Dynamic programming. O(n log n) activity scheduling with profits.

–  Duality. O(n3) bipartite matching.

5

Intractable Problems

•  There are other problems that provably require
exponential-time.

•  Examples:
–  Given a Turing machine, does it halt in at most k steps on any

finite input?

–  Given a board position in an n-by-n generalization of chess, can
black guarantee a win?

6

Impossible Problems

•  There are other problems that cannot be solved by any
algorithm.

7

The Halting Problem

•  The halting problem is a particular decision problem:
–  Given a description of a program and a finite input, decide

whether the program will halt or run forever on that input.

•  A general algorithm to solve the halting problem for all
possible program-input pairs cannot exist: The halting
problem is undecidable.

8

NP Completeness

•  Bad news. Huge number of fundamental problems have
defied classification for decades.

•  Some good news. Using the technique of reduction, we
can show that these fundamental problems are
"computationally equivalent" and appear to be different
manifestations of one really hard problem.

9

Ingredients:

• Instances: The possible inputs to the problem.

• Solutions for Instance: Each instance has an
exponentially large set of solutions.

• Cost of Solution: Each solution has an easy to
compute cost or value.

Optimization Problems

10

Specification of an Optimization Problem

• Preconditions: The input is one instance.

• Postconditions:
The output is one of the valid solutions for this
instance with optimal cost.
(minimum or maximum)

Optimization Problems

Eg: Given graph G, find biggest clique.

11

• An optimization problem

• Each solution is either valid or not (no cost)
• The output is

• Yes, it has an valid solution.

• No, it does not

• the solution is not returned

• Eg: Given graph and integer <G,k>,

 does G have a clique of size k?

Non-Deterministic
Poly-Time Decision Problems (NP)

12

• Key: Given
• an instance I (= <G,k>)
• and a solution S (= subset of nodes)
• there is a poly-time alg Valid(I,S) to test
 whether or not S is a valid solution for I.
• Poly-time in |I| not in |S|.

k=4

Valid
Not Valid

Non-Deterministic
Poly-Time Decision Problems (NP)

13

Which are more alike?

Network
Flow

Graph
Colouring

Circuit
Satisfiability

Bipartite
Matching

Best known algorithm
exponential time

Polynomial time
algorithm

Non-Deterministic
Poly Time
Complete

Similar structure Similar structure

Reducibility

15

A Graph Named “Gadget”

16

K-COLORING

•  A k-coloring of a graph is an assignment of one color to
each vertex such that:
–  No more than k colors are used

–  No two adjacent vertices receive the same color

•  A graph is called k-colorable iff it has a k-coloring

17

Course Scheduling Problem

Given the courses students want to take and
the time slots available, schedule courses to
minimize number of conflicts (Avoid
scheduling two courses at the same time if a
student wants to take both).

18

K-CRAYOLA Problem:

•  Given a graph G and a k,
find a way to colour G with k
colours.

  Rudich www.discretemath.com

Colour each node.

Nodes with lines between them
must have different colours.

19

Schedule each course.
Courses that conflict
can’t be at same time.

Colour each node.
Nodes with lines
between them must
have different colours.

≈	

Two problems that are cosmetically different,
but substantially the same

Two Different Problems

20

Problems are the Same!

Schedule each course.
Courses that conflict can’t
be at same time.

Colour each node.
Nodes with lines between
them must have different
colours.

≈	

English

Math Science

course ≈ node
can’t be scheduled

at same time line between them
	

≈	

scheduled time ≈ colour

1pm Mon

1pm Mon

3pm Fri

21

A CRAYOLA Question!
•  Is Gadget 2-colorable?

• 

No: it contains a triangle!

22

•  Is Gadget 3-colorable?

• 

A CRAYOLA Question!

Yes!

23

• Given a graph G, how do we
decide if it can be 2-colored?

2 CRAYOLAS

PERSPIRATION; BRUTE FORCE:
Try out all 2n ways of 2 coloring G.

24

25

26

27

• Given a graph G, what is a fast
algorithm to decide if it can be 3-

colored?

3 CRAYOLAS

? ? ? ? ? ? ? ?

Let’s consider a completely different
problem.

29

k-CLIQUES

•  A k-clique is a set of k nodes with all k(k-1)/2 possible
edges between them.

30

This graph contains a 4-clique

31

Given an n-node graph G and a number
k, how can you decide if G contains a k-

clique?

•  PERSPIRATION: Try out all n-choose-k possible
locations for the k clique

•  INSPIRATION:

? ? ? ? ? ? ? ?

! possibilities
!()!

n n
k k n k
⎛ ⎞

=⎜ ⎟ −⎝ ⎠
3e.g., 3 ()k n= →Θ

In general, ()knΘ

OK, how about a slightly different
problem?

33

INDEPENDENT SET

•  An independent set is a set of vertices with no edges
between them.

This graph
contains an
independent
set of size 3.

34

Given an n-node graph G and a number
k, how can you decide if G contains an

independent set of size k?

•  PERSPIRATION: Try out all n-choose-k possible
locations for independent set

•  INSPIRATION:

? ? ? ? ? ? ? ?

One more completely different problem

36

Combinational Circuits

•  AND, OR, NOT, gates wired together with no feedback
allowed (acyclic).

37

Logic Gates

Not And Or

38

Example Circuit

39

CIRCUIT-SATISFIABILITY
(decision version)

•  Given a circuit with n-inputs and one
output, is there a way to assign 0-1 values
to the input wires so that the output value
is 1 (true)?

40

CIRCUIT-SATISFIABILITY
(search version)

•  Given a circuit with n-inputs and one
output, find an assignment of 0-1 values to
the input wires so that the output value is 1
(true), or determine that no such
assignment exists.

41

Satisfiable Circuit Example

42

Satisfiable?

No!

43

Given a circuit, is it satisfiable?

•  PERSPIRATION: Try out all 2n assignments

•  INSPIRATION:

? ? ? ? ? ? ? ?

44

We have seen 4 problems:
coloring, clique,

independent set, and
circuit SAT.

They all have a common
story: A large space of
possibilities only a tiny

fraction of which satisfy
the constraints. Brute

force takes too long, and
no feasible algorithm is

known.

45

CLIQUE / INDEPENDENT SET

• Two problems that are
cosmetically different, but
substantially the same

46

Complement Of G

•  Given a graph G, let G*, the complement
of G, be the graph obtained by the rule
that two nodes in G* are connected if and
only if the corresponding nodes of G are
not connected

47

Example

G *G

3-Clique Independent set of size 3

48

Reduction

–  Suppose you have a method for solving the k-clique problem.

–  How could it be used to solve the independent set problem?

49

Or what if you have an Oracle?

•  or·a·cle

•  Pronunciation: 'or-&-k&l, 'är-

•  Function: noun

•  Etymology: Middle English, from Middle French, from Latin oraculum, from orare to
speak

•  1 a : a person (as a priestess of ancient Greece) through whom a deity is believed to
speak

•  2 a : a person giving wise or authoritative decisions or opinions

50

Let G be an n-node graph.

GIVEN:
Clique
Oracle

<G,k>

BUILD:
Indep.

Set
Oracle

<G*, k>

51

Let G be an n-node graph.

GIVEN:
Indep.

Set
Oracle

<G,k>

BUILD:
 Clique
Oracle

<G*, k>

52

Thus, we can quickly
reduce clique problem
to an independent set

problem and vice versa.

There is a fast method
for one if and only if

there is a fast method
for the other.

53

Given an oracle for
circuit SAT, how can

you quickly solve
3-colorability?

54

Vn(X,Y)

•  Let Vn be a circuit that takes an n-node graph X and an
assignment Y of colors to these nodes, and verifies that Y is a
valid 3-colouring of X. i.e., Vn(X,Y)=1 iff Y is a 3-colouring of X.

•  X is expressed as an n-choose-2 bit sequence. Y is expressed
as a 2n bit sequence.

•  Given n, we can construct Vn in time O(n2).

55

Let G be an n-node graph.

GIVEN:
SAT

Oracle

 G

BUILD:
3-

color
Oracle

Vn(G,Y)

56

Given an oracle for
circuit SAT, how can

you quickly solve
k-clique?

57

Vn,k(X,Y)

•  Let Vn be a circuit that takes an n-node graph X and a subset of
nodes Y, and verifies that Y is a k-clique X. I.e., Vn(X,Y)=1 iff Y
is a k-clique of X.

•  X is expressed as an n choose 2 bit sequence. Y is expressed
as an n bit sequence.

•  Given n, we can construct Vn,k in time O(n2).

58

Let G be an n-node graph.

GIVEN:
SAT

Oracle

 <G,k>

BUILD:
Clique

Oracle

Vn,k(G,Y)

59

Given an oracle for
3-colorability, how

can you quickly
solve

circuit SAT?

60

Reducing Circuit-SAT to 3-Colouring

•  Goal: map circuit to graph that is 3-colourable only if
circuit is satisfiable.

•  How do we represent a logic gate as a 3-colouring
problem?

61

X Y

Output

Example

X and Y and Output
are boolean variables
in circuit.

Without loss of
generality, map truth
values to colours, e.g.

0  red

1  green

Add base colour for
encoding purposes, e.g.
blue.

X
Y

62

X Y

Output

Example

Note that in a valid 3-
colouring, this node
cannot have the same
colour as X, Y or
Output.

Thus, without loss of
generality, we can
assign it the base
colour, blue.

X
Y

63

X Y

Output

Example

Now suppose we fix
this node to represent
false.

X
Y

64

X Y

Output

Example
F

Now suppose we fix
this node to represent
false.

X
Y

65

Example
T F

X Y

Output

Now build a truth table
for (X, Y, Output).

What if X=Y=0?

X
Y

66

Example
T F

X Y

Output

Now build a truth table
for (X, Y, Output).

What if X=Y=0?

X
Y

67

Example
T F

X Y

Output

Now build a truth table
for (X, Y, Output).

What if X=Y=0?

X
Y

68

Example
T F

X Y

Output

Now build a truth table
for (X, Y, Output).

What if X=Y=0?

X
Y

69

Example
T F

X Y

Output

Thus (X,Y)=0Output=0 X
Y

70

Example
T F

X Y

Output

Conversely, what if
Output=0?

X
Y

71

Example
T F

X Y

Output

Conversely, what if
Output=0?

X
Y

72

Example
T F

X Y

Output

Conversely, what if
Output=0?

X
Y

73

Example
T F

X Y

Output

Conversely, what if
Output=0?

X
Y

74

Example
T F

X Y

Output

Thus Output=0X=Y=0. X
Y

75

Example
T F

X Y

Output

X Y Output

F F F

F T T

T F T

T T T

What type of gate is this?

An OR gate!
X Y

End of Final Lecture

77

T F

X What type of gate is this?

A NOT gate!

Output

X

78

OR

OR

NOT

x y z

x
y

z

79

OR

OR

NOT

x y z

x
y

z

Satisfiability of this circuit
=
3-colorability of this graph

80

Let C be an n-input circuit.

GIVEN:
3-color
Oracle

 C

BUILD:
SAT

Oracle

Graph composed of
gadgets that mimic the

gates in C

81

Formal Statement

•  There is a polynomial-time function f such that:

•  C is satisfiable <-> f(C) is 3 colorable

82

4 Problems All Equivalent

•  If you can solve one quickly then you can solve them all
quickly:

•  Circuit-SAT

•  Clique

•  Independent Set

•  3 Colorability

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

10
0

