
Reducibility and  
NP-Completeness 
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Computational Complexity Theory 

•  Computational Complexity Theory is the study of 
how much of a given resource (such as time, space, 
parallelism, algebraic operations, communication) is 
required to solve important problems. 
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Classification of Problems 

•  Q.  Which problems will we be able to solve in practice? 

•  A working definition.  [Cobham 1964, Edmonds 1965, 
Rabin 1966]  Those with polynomial-time algorithms. 

Yes Probably no 
Shortest path Longest path 

Min cut Max cut 
2-SAT 3-SAT 

Matching 3D-matching 

Primality testing Factoring 

Planar 4-color Planar 3-color 
Bipartite vertex cover Vertex cover 
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Tractable Problems 

•  We have generally studied tractable problems (solvable 
in polynomial time). 

•  Algorithm design patterns.  Examples. 

–  Greed.    O(n log n) activity scheduling. 

–  Divide-and-conquer.  O(n log n) merge sort. 

–  Dynamic programming.  O(n log n) activity scheduling with profits. 

–  Duality.    O(n3) bipartite matching. 
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Intractable Problems 

•  There are other problems that provably require 
exponential-time. 

•  Examples: 
–  Given a Turing machine, does it halt in at most k steps on any 

finite input? 

–  Given a board position in an n-by-n generalization of chess, can 
black guarantee a win? 
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Impossible Problems 

•  There are other problems that cannot be solved by any 
algorithm. 
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The Halting Problem 

•  The halting problem is a particular decision problem: 
–  Given a description of a program and a finite input, decide 

whether the program will halt or run forever on that input. 

•  A general algorithm to solve the halting problem for all 
possible program-input pairs cannot exist:  The halting 
problem is undecidable. 
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NP Completeness 

•  Bad news.  Huge number of fundamental problems have 
defied classification for decades. 

•  Some good news.  Using the technique of reduction, we 
can show that these fundamental problems are 
"computationally equivalent" and appear to be different 
manifestations of one really hard problem. 
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Ingredients: 

• Instances: The possible inputs to the problem.  

• Solutions for Instance: Each instance has an 
exponentially large set of solutions.  

• Cost of Solution: Each solution has an easy to 
compute cost or value.   

Optimization Problems 
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Specification of an Optimization Problem 

• Preconditions: The input is one instance. 

• Postconditions:  
The output is one of the valid solutions for this  
instance with optimal cost.  
(minimum or maximum) 

Optimization Problems 

Eg: Given graph G, find biggest clique. 
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• An optimization problem 

• Each solution is either valid or not   (no cost) 
• The output is  

• Yes, it has an valid solution. 

• No, it does not 

• the solution is not returned 

• Eg: Given graph and integer <G,k>,  

        does G have a clique of size k? 

Non-Deterministic 
Poly-Time Decision Problems (NP) 
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• Key: Given  
• an instance I        (= <G,k>) 
• and a solution S   (= subset of nodes) 
• there is a poly-time alg Valid(I,S) to test  
  whether or not S is a valid solution for I. 
• Poly-time in |I| not in |S|.  

k=4 

Valid 
Not Valid 

Non-Deterministic 
Poly-Time Decision Problems (NP) 
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Which are more alike? 

Network  
Flow 

Graph  
Colouring 

Circuit  
Satisfiability 

Bipartite 
Matching 

Best known algorithm 
exponential time 

Polynomial time 
algorithm 

Non-Deterministic  
Poly Time 
Complete 

Similar structure Similar structure 



Reducibility 
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A Graph Named “Gadget” 



16 

K-COLORING 

•  A k-coloring of a graph is an assignment of one color to 
each vertex such that: 
–  No more than k colors are used 

–  No two adjacent vertices receive the same color 

•  A graph is called k-colorable iff it has a k-coloring 
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Course Scheduling Problem 

Given the courses students want to take and 
the time slots available, schedule courses to 
minimize number of conflicts (Avoid 
scheduling two courses at the same time if a 
student wants to take both).  
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K-CRAYOLA  Problem: 

•  Given a graph G and a k,  
find a way to colour G with k 
colours. 

  Rudich www.discretemath.com 

Colour each node. 

Nodes with lines between them 
must have different colours. 
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Schedule each course. 
Courses that conflict 
can’t be at same time. 

Colour each node. 
Nodes with lines 
between them must 
have different colours. 

≈	



Two problems that are cosmetically different, 
but substantially the same 

Two Different Problems 
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Problems are the Same! 

Schedule each course. 
Courses that conflict can’t 
be at same time. 

Colour each node. 
Nodes with lines between 
them must have different 
colours. 

≈	



English 

Math Science 

course  ≈  node 
can’t be scheduled  

at same time line between them 
	



≈	



scheduled time  ≈  colour 

1pm Mon 

1pm Mon 

3pm Fri 
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A CRAYOLA Question! 
•  Is Gadget 2-colorable? 

•    

No: it contains a triangle! 
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•  Is Gadget 3-colorable? 

•    

A CRAYOLA Question! 

Yes! 
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• Given a graph G, how do we 
decide if it can be 2-colored? 

2 CRAYOLAS 

PERSPIRATION; BRUTE FORCE:  
Try out all 2n ways of 2 coloring G. 
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26 
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• Given a graph G, what is a fast 
algorithm to decide if it can be 3-

colored? 

3 CRAYOLAS 

? ? ? ? ? ? ? ?



Let’s consider a completely different 
problem. 
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k-CLIQUES 

•  A k-clique is a set of k nodes with all k(k-1)/2 possible 
edges between them. 
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This graph contains a 4-clique 
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Given an  n-node graph G and a number 
k, how can you decide if G contains a k-

clique?  

•  PERSPIRATION: Try out all  n-choose-k possible 
locations for the k clique 

•  INSPIRATION:  

? ? ? ? ? ? ? ?

!  possibilities
!( )!

n n
k k n k
⎛ ⎞

=⎜ ⎟ −⎝ ⎠
3e.g., 3 ( )k n= →Θ

In general, ( )knΘ



OK, how about a slightly different 
problem? 
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INDEPENDENT SET 

•  An independent set is a set of vertices with no edges 
between them. 

This graph 
contains an 
independent 
set of size 3. 
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Given an  n-node graph G and a number 
k, how can you decide if G contains an 

independent set of size k? 

•  PERSPIRATION: Try out all n-choose-k possible 
locations for independent set 

•  INSPIRATION:  

? ? ? ? ? ? ? ?



One more completely different problem 
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Combinational Circuits 

•  AND, OR, NOT, gates wired together with no feedback 
allowed (acyclic). 
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Logic Gates 

Not And Or 
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Example Circuit 
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CIRCUIT-SATISFIABILITY 
(decision version) 

•  Given a circuit with n-inputs and one 
output, is there a way to assign 0-1 values 
to the input wires so that the output value 
is 1 (true)? 
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CIRCUIT-SATISFIABILITY 
(search version) 

•  Given a circuit with n-inputs and one 
output, find an assignment of 0-1 values to 
the input wires so that the output value is 1 
(true), or determine that no such 
assignment exists. 
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Satisfiable Circuit Example 



42 

Satisfiable? 

No! 
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Given a circuit, is it satisfiable? 

•  PERSPIRATION: Try out all 2n assignments 

•  INSPIRATION:  

? ? ? ? ? ? ? ?
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We have seen 4 problems: 
coloring, clique, 

independent set, and 
circuit SAT. 

 
They all have a common 
story: A large space of  
possibilities only a tiny 

fraction of  which satisfy 
the constraints. Brute 

force takes too long, and 
no feasible algorithm is 

known. 
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CLIQUE / INDEPENDENT SET 

• Two problems that are 
cosmetically different, but 
substantially the same 
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Complement Of G 

•  Given a graph G, let G*, the complement 
of G, be the graph obtained by the rule 
that two nodes in G* are connected if and 
only if the corresponding nodes of G are 
not connected  
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Example 

G *G

3-Clique Independent set of size 3 
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Reduction 

–  Suppose you have a method for solving the k-clique problem. 

–  How could it be used to solve the independent set problem? 
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Or what if you have an Oracle? 

•  or·a·cle 

•  Pronunciation: 'or-&-k&l, 'är- 

•  Function: noun 

•  Etymology: Middle English, from Middle French, from Latin oraculum, from orare to 
speak 

•  1 a : a person (as a priestess of ancient Greece) through whom a deity is believed to 
speak  

•  2 a : a person giving wise or authoritative decisions or opinions 
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Let G be an n-node graph. 

GIVEN:
Clique 
Oracle  

 
<G,k> 

BUILD: 
Indep. 

Set 
Oracle 

<G*, k> 
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Let G be an n-node graph. 

GIVEN: 
Indep. 

Set 
Oracle  

 
<G,k> 

BUILD: 
 Clique  
Oracle 

<G*, k> 
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Thus, we can quickly 
reduce clique problem 
to an independent set 

problem and vice versa.  
 

There is a fast method 
for one if  and only if   

there is a fast method 
for the other. 
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Given an oracle for 
circuit SAT, how can 

you quickly solve  
3-colorability? 
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Vn(X,Y) 

•  Let Vn be a circuit that takes an n-node graph X and an 
assignment Y of colors to these nodes, and verifies that Y is a 
valid 3-colouring of X. i.e., Vn(X,Y)=1 iff Y is a 3-colouring of X. 

•  X is expressed as an n-choose-2 bit sequence. Y is expressed 
as a 2n bit sequence.  

•  Given n, we can construct Vn in time O(n2). 
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Let G be an n-node graph. 

GIVEN:
SAT 

Oracle  

 
      G 

BUILD: 
3- 

color 
Oracle 

Vn(G,Y) 
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Given an oracle for 
circuit SAT, how can 

you quickly solve  
k-clique? 
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Vn,k(X,Y) 

•  Let Vn be a circuit that takes an n-node graph X and a subset of 
nodes Y, and verifies that Y is a k-clique X. I.e., Vn(X,Y)=1 iff Y 
is a k-clique of X. 

•  X is expressed as an n choose 2 bit sequence. Y is expressed 
as an n bit sequence.  

•  Given n, we can construct Vn,k in time O(n2). 
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Let G be an n-node graph. 

GIVEN:
SAT 

Oracle  

 
      <G,k> 

BUILD: 
Clique 

Oracle 

Vn,k(G,Y) 
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Given an oracle for 
3-colorability, how 

can you quickly 
solve  

circuit SAT? 
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Reducing Circuit-SAT to 3-Colouring 

•  Goal:  map circuit to graph that is 3-colourable only if 
circuit is satisfiable. 

•  How do we represent a logic gate as a 3-colouring 
problem? 



61 

X Y

Output 

Example 

X and Y and Output 
are boolean variables 
in circuit. 

Without loss of 
generality, map truth 
values to colours, e.g. 

0  red 

1  green 

Add base colour for 
encoding purposes, e.g. 
blue. 

X 
Y 
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X Y

Output 

Example 

Note that in a valid 3-
colouring, this node 
cannot have the same 
colour as X, Y or 
Output. 

Thus, without loss of 
generality, we can 
assign it the base 
colour, blue.  

X 
Y 
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X Y

Output 

Example 

Now suppose we fix 
this node to represent 
false.  

X 
Y 
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X Y

Output 

Example 
F 

Now suppose we fix 
this node to represent 
false.  

X 
Y 
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Example 
T F 

X Y

Output 

Now build a truth table 
for (X, Y, Output). 

What if X=Y=0?  

X 
Y 
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Example 
T F 

X Y

Output 

Now build a truth table 
for (X, Y, Output). 

What if X=Y=0?  

X 
Y 
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Example 
T F 

X Y

Output 

Now build a truth table 
for (X, Y, Output). 

What if X=Y=0?  

X 
Y 
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Example 
T F 

X Y

Output 

Now build a truth table 
for (X, Y, Output). 

What if X=Y=0?  

X 
Y 
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Example 
T F 

X Y

Output 

Thus (X,Y)=0Output=0 X 
Y 
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Example 
T F 

X Y

Output 

Conversely, what if 
Output=0?  

X 
Y 
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Example 
T F 

X Y

Output 

Conversely, what if 
Output=0?  

X 
Y 
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Example 
T F 

X Y

Output 

Conversely, what if 
Output=0?  

X 
Y 
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Example 
T F 

X Y

Output 

Conversely, what if 
Output=0?  

X 
Y 
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Example 
T F 

X Y

Output 

Thus Output=0X=Y=0. X 
Y 
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Example 
T F 

X Y

Output 

X Y Output 

F F F 

F T T 

T F T 

T T T 

What type of gate is this? 

An OR gate! 
X Y 



End of Final Lecture 
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T F 

X  What type of  gate is this? 

A NOT gate! 

Output 

X 
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OR 

OR 

NOT 

x y z

x
y

z
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OR 

OR 

NOT 

x y z

x
y

z

Satisfiability of  this circuit 
=  
3-colorability of  this graph 
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Let C be an n-input circuit. 

GIVEN:
3-color 
Oracle  

 
      C 

BUILD: 
SAT 

Oracle 

Graph composed of  
gadgets that mimic the 

gates in C 
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Formal Statement 

•  There is a polynomial-time function f such that: 

•  C is satisfiable <-> f(C) is 3 colorable 
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4 Problems All Equivalent 

•  If you can solve one quickly then you can solve them all 
quickly: 

•  Circuit-SAT 

•  Clique 

•  Independent Set 

•  3 Colorability 
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