Introduction to Algorithms 6.046J/18.401J

Lecture 2
Asymptotic Notation

- O-, Ω-, and Θ-notation Recurrences
- Substitution method
- Iterating the recurrence
- Recursion tree
- Master method

Prof. Charles E. Leiserson

Asymptotic notation

O-notation (upper bounds):

We write $f(n)=O(g(n))$ if there exist constants $c>0, n_{0}>0$ such that $0 \leq f(n) \leq c g(n)$ for all $n \geq n_{0}$.

Asymptotic notation

O-notation (upper bounds):

We write $f(n)=O(g(n))$ if there exist constants $c>0, n_{0}>0$ such that $0 \leq f(n) \leq c g(n)$ for all $n \geq n_{0}$.

$$
\text { Example: } 2 n^{2}=O\left(n^{3}\right) \quad\left(c=1, n_{0}=2\right)
$$

Asymptotic notation

O-notation (upper bounds):

We write $f(n)=O(g(n))$ if there exist constants $c>0, n_{0}>0$ such that $0 \leq f(n) \leq c g(n)$ for all $n \geq n_{0}$.

Example: $2 n^{2}=O\left(n^{3}\right)$
 $\left(c=1, n_{0}=2\right)$

functions, not values

Asymptotic notation

O-notation (upper bounds):

We write $f(n)=O(g(n))$ if there

 exist constants $c>0, n_{0}>0$ such that $0 \leq f(n) \leq c g(n)$ for all $n \geq n_{0}$.Example: $2 n^{2}=O\left(n^{3}\right) \quad\left(c=1, n_{0}=2\right)$
funny, "one-way" equality
© 2001-4 by Charles E. Leiserson

Set definition of O-notation

$O(g(n))=\{f(n)$: there exist constants $c>0, n_{0}>0$ such that $0 \leq f(n) \leq c g(n)$ for all $\left.n \geq n_{0}\right\}$

Set definition of O-notation

$O(g(n))=\{f(n)$: there exist constants $c>0, n_{0}>0$ such that $0 \leq f(n) \leq c g(n)$ for all $\left.n \geq n_{0}\right\}$

Example: $2 n^{2} \in O\left(n^{3}\right)$

Set definition of O-notation

$O(g(n))=\{f(n)$: there exist constants $c>0, n_{0}>0$ such that $0 \leq f(n) \leq c g(n)$ for all $\left.n \geq n_{0}\right\}$

Example: $2 n^{2} \in O\left(n^{3}\right)$

(Logicians: $\lambda n .2 n^{2} \in O\left(\lambda n . n^{3}\right)$, but it's convenient to be sloppy, as long as we understand what's really going on.)

Macro substitution

Convention: A set in a formula represents an anonymous function in the set.

Macro substitution

Convention: A set in a formula represents an anonymous function in the set.

Example: $f(n)=n^{3}+O\left(n^{2}\right)$
means
$f(n)=n^{3}+h(n)$
for some $h(n) \in O\left(n^{2}\right)$.
© 2001-4 by Charles E. Leiserson

Ω-notation (lower bounds)

O-notation is an upper-bound notation. It makes no sense to say $f(n)$ is at least $O\left(n^{2}\right)$.

Ω-notation (lower bounds)

O-notation is an upper-bound notation. It makes no sense to say $f(n)$ is at least $O\left(n^{2}\right)$.
$\Omega(g(n))=\{f(n):$
$\left.\qquad \begin{array}{c}\text { there exist constants } \\ \\ \text { that } 0 \leq \cos >0 \text { such } \\ \\ \left.\text { for all } n \geq n_{0}\right\}\end{array}\right\} f(n)$

Ω-notation (lower bounds)

$\Omega(g(n))=\{f(n):$ there exist constants $c>0, n_{0}>0$ such that $0 \leq c g(n) \leq f(n)$ for all $\left.n \geq n_{0}\right\}$

Example: $\sqrt{n}=\Omega(\lg n)$

Θ-notation (tight bounds)

$$
\Theta(g(n))=\mathrm{O}(g(n)) \cap \Omega(g(n))
$$

Θ-notation (tight bounds)

$$
\Theta(g(n))=O(g(n)) \cap \Omega(g(n))
$$

Θ-notation (tight bounds)

$$
\Theta(g(n))=O(g(n)) \cap \Omega(g(n))
$$

$$
\text { EXAMPLE: } \frac{1}{2} n^{2}-2 n=\Theta\left(n^{2}\right)
$$

Theorem. The leading constant and loworder terms don't matter. \square

Solving recurrences

- The analysis of merge sort from Lecture 1 required us to solve a recurrence.
- Recurrences are like solving integrals, differential equations, etc.
- Learn a few tricks.
- Lecture 3: Applications of recurrences to divide-and-conquer algorithms.

Substitution method

The most general method: 1. Guess the form of the solution.
 2. Verify by induction.
 3. Solve for constants.

Substitution method

The most general method:

1. Guess the form of the solution.
2. Verify by induction.
3. Solve for constants.

EXAMPLE: $T(n)=4 T(n / 2)+n$

- [Assume that $T(1)=\Theta(1)$.]
- Guess $O\left(n^{3}\right)$. (Prove O and Ω separately.)
- Assume that $T(k) \leq c k^{3}$ for $k<n$.
- Prove $T(n) \leq c n^{3}$ by induction.

Example of substitution

$$
\begin{aligned}
T(n) & =4 T(n / 2)+n \\
& \leq 4 c(n / 2)^{3}+n \\
& =(c / 2) n^{3}+n \\
& =c n^{3}-\left((c / 2) n^{3}-n\right)-\text { desired }- \text { residual } \\
& \leq c n^{3}-\text { desired }
\end{aligned}
$$

whenever ($c / 2$) $n^{3}-n \geq 0$, for example, if $c \geq 2$ and $n \geq 1$.
residual

Example (continued)

- We must also handle the initial conditions, that is, ground the induction with base cases.
- Base: $T(n)=\Theta(1)$ for all $n<n_{0}$, where n_{0} is a suitable constant.
- For $1 \leq n<n_{0}$, we have " $\Theta(1)$ " $\leq c n^{3}$, if we pick c big enough.

Example (continued)

- We must also handle the initial conditions, that is, ground the induction with base cases.
- Base: $T(n)=\Theta(1)$ for all $n<n_{0}$, where n_{0} is a suitable constant.
- For $1 \leq n<n_{0}$, we have " $\Theta(1) " \leq c n^{3}$, if we pick c big enough.

This bound is not tight!

A tighter upper bound?

We shall prove that $T(n)=O\left(n^{2}\right)$.

A tighter upper bound?

We shall prove that $T(n)=O\left(n^{2}\right)$.

Assume that $T(k) \leq c k^{2}$ for $k<n$:

$$
\begin{aligned}
T(n) & =4 T(n / 2)+n \\
& \leq 4 c(n / 2)^{2}+n \\
& =c n^{2}+n \\
& =O\left(n^{2}\right)
\end{aligned}
$$

A tighter upper bound?

We shall prove that $T(n)=O\left(n^{2}\right)$.

Assume that $T(k) \leq c k^{2}$ for $k<n$:

$$
T(n)=4 T(n / 2)+n
$$

$$
\leq 4 c(n / 2)^{2}+n
$$

$$
=c n^{2}+n
$$

$=02$) Wrong! We must prove the I.H.

A tighter upper bound?

We shall prove that $T(n)=O\left(n^{2}\right)$.
Assume that $T(k) \leq c k^{2}$ for $k<n$:

$$
T(n)=4 T(n / 2)+n
$$

$$
\leq 4 c(n / 2)^{2}+n
$$

$$
=c n^{2}+n
$$

$=0$) Wrong! We must prove the I.H.
$=c n^{2}-(-n) \quad$ [desired - residual]
$\leq c n^{2}$ for $\boldsymbol{n o}$ choice of $c>0$. Lose!

A tighter upper bound!

IDEA: Strengthen the inductive hypothesis. - Subtract a low-order term.

Inductive hypothesis: $T(k) \leq c_{1} k^{2}-c_{2} k$ for $k<n$.

A tighter upper bound!

IDEA: Strengthen the inductive hypothesis.

- Subtract a low-order term.

Inductive hypothesis: $T(k) \leq c_{1} k^{2}-c_{2} k$ for $k<n$.

$$
\begin{aligned}
T(n) & =4 T(n / 2)+n \\
& =4\left(c_{1}(n / 2)^{2}-c_{2}(n / 2)+n\right. \\
& =c_{1} n^{2}-2 c_{2} n+n \\
& =c_{1} n^{2}-c_{2} n-\left(c_{2} n-n\right) \\
& \leq c_{1} n^{2}-c_{2} n \text { if } c_{2} \geq 1 .
\end{aligned}
$$

A tighter upper bound!

IDEA: Strengthen the inductive hypothesis.

- Subtract a low-order term.

Inductive hypothesis: $T(k) \leq c_{1} k^{2}-c_{2} k$ for $k<n$.

$$
\begin{aligned}
T(n) & =4 T(n / 2)+n \\
& =4\left(c_{1}(n / 2)^{2}-c_{2}(n / 2)+n\right. \\
& =c_{1} n^{2}-2 c_{2} n+n \\
& =c_{1} n^{2}-c_{2} n-\left(c_{2} n-n\right) \\
& \leq c_{1} n^{2}-c_{2} n \text { if } c_{2} \geq 1 .
\end{aligned}
$$

Pick c_{1} big enough to handle the initial conditions.

Recursion-tree method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion-tree method can be unreliable, just like any method that uses ellipses (...).
- The recursion-tree method promotes intuition, however.
- The recursion tree method is good for generating guesses for the substitution method.

Example of recursion tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of recursion tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:
$T(n)$

Example of recursion tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of recursion tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of recursion tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of recursion tree

$$
\text { Solve } T(n)=T(n / 4)+T(n / 2)+n^{2}:
$$

Example of recursion tree

$$
\text { Solve } T(n)=T(n / 4)+T(n / 2)+n^{2}:
$$

Example of recursion tree

$$
\text { Solve } T(n)=T(n / 4)+T(n / 2)+n^{2}:
$$

Example of recursion tree

$$
\text { Solve } T(n)=T(n / 4)+T(n / 2)+n^{2}:
$$

The master method

The master method applies to recurrences of the form

$$
T(n)=a T(n / b)+f(n)
$$

where $a \geq 1, b>1$, and f is asymptotically positive.

Three common cases

Compare $f(n)$ with $n^{\log b} a$:

1. $f(n)=O\left(n^{\log b^{a-\varepsilon}}\right)$ for some constant $\varepsilon>0$.

- $f(n)$ grows polynomially slower than $n^{\log _{b} a}$ (by an n^{ε} factor).
Solution: $T(n)=\Theta\left(n^{\log _{b} a}\right)$.

Three common cases

Compare $f(n)$ with $n^{\log _{b} a}$:

1. $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$.

- $f(n)$ grows polynomially slower than $n^{\log _{b} a}$ (by an n^{ε} factor).
Solution: $T(n)=\Theta\left(n^{\log _{b} a}\right)$.

2. $f(n)=\Theta\left(n^{\log _{b} a} g^{k} n\right)$ for some constant $k \geq 0$.

- $f(n)$ and $n^{\log _{b} a}$ grow at similar rates.

Solution: $T(n)=\Theta\left(n^{\log _{b} a} 1 g^{k+1} n\right)$.

Three common cases (cont.)

Compare $f(n)$ with $n^{\log _{b} a}$:
3. $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$.

- $f(n)$ grows polynomially faster than $n^{\log _{b} a}$ (by an n^{ε} factor),
and $f(n)$ satisfies the regularity condition that $a f(n / b) \leq c f(n)$ for some constant $c<1$.
Solution: $T(n)=\Theta(f(n))$.

Examples

Ex. $T(n)=4 T(n / 2)+n$

$$
a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n .
$$

$$
\text { CASE 1: } f(n)=O\left(n^{2-\varepsilon}\right) \text { for } \varepsilon=1 \text {. }
$$

$\therefore T(n)=\Theta\left(n^{2}\right)$.

Examples

Ex. $T(n)=4 T(n / 2)+n$

$$
a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n .
$$

CASE 1: $f(n)=O\left(n^{2-\varepsilon}\right)$ for $\varepsilon=1$.
$\therefore T(n)=\Theta\left(n^{2}\right)$.
Ex. $T(n)=4 T(n / 2)+n^{2}$

$$
a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n^{2} .
$$

CASE 2: $f(n)=\Theta\left(n^{2} \lg ^{0} n\right)$, that is, $k=0$.
$\therefore T(n)=\Theta\left(n^{2} \lg n\right)$.

Examples

Ex. $T(n)=4 T(n / 2)+n^{3}$

$$
\begin{aligned}
& a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n^{3} . \\
& \text { CASE 3: } f(n)=\Omega\left(n^{2+\varepsilon}\right) \text { for } \varepsilon=1 \\
& \text { and } 4(n / 2)^{3} \leq c n^{3} \text { (reg. cond.) for } c=1 / 2 \text {. } \\
& \therefore T(n)=\Theta\left(n^{3}\right) .
\end{aligned}
$$

Examples

Ex. $T(n)=4 T(n / 2)+n^{3}$

$$
\begin{aligned}
& a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n^{3} . \\
& \text { CASE 3: } f(n)=\Omega\left(n^{2+\varepsilon}\right) \text { for } \varepsilon=1 \\
& \text { and } 4(n / 2)^{3} \leq c n^{3} \text { (reg. cond.) for } c=1 / 2 \text {. } \\
& \therefore T(n)=\Theta\left(n^{3}\right) .
\end{aligned}
$$

Ex. $T(n)=4 T(n / 2)+n^{2} / \lg n$ $a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n^{2} / \lg n$. Master method does not apply. In particular, for every constant $\varepsilon>0$, we have $n^{\varepsilon}=\omega(\lg n)$.

Idea of master theorem

Recursion tree:

Idea of master theorem

Recursion tree:

Idea of master theorem

Recursion tree:

© 2001-4 by Charles E. Leiserson

Idea of master theorem

Recursion tree:

Idea of master theorem

Recursion tree:

Idea of master theorem

Recursion tree:

Idea of master theorem

Recursion tree:

Appendix: geometric series

$$
\begin{gathered}
1+x+x^{2}+\cdots+x^{n}=\frac{1-x^{n+1}}{1-x} \text { for } x \neq 1 \\
1+x+x^{2}+\cdots=\frac{1}{1-x} \text { for }|x|<1
\end{gathered}
$$

Return to last slide viewed.

© 2001-4 by Charles E. Leiserson

