
Introduction to Algorithms
6.046J/18.401J

Prof. Charles E. Leiserson

LECTURE 2
Asymptotic Notation
• O-, Ω-, and Θ-notation
Recurrences
• Substitution method
• Iterating the recurrence
• Recursion tree
• Master method

September 13, 2004 Introduction to Algorithms L2.2

Asymptotic notation

We write f(n) = O(g(n)) if there
exist constants c > 0, n0 > 0 such
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0.

We write f(n) = O(g(n)) if there
exist constants c > 0, n0 > 0 such
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0.

O-notation (upper bounds):

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.3

Asymptotic notation

We write f(n) = O(g(n)) if there
exist constants c > 0, n0 > 0 such
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0.

We write f(n) = O(g(n)) if there
exist constants c > 0, n0 > 0 such
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0.

O-notation (upper bounds):

EXAMPLE: 2n2 = O(n3) (c = 1, n0 = 2)

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.4

Asymptotic notation

We write f(n) = O(g(n)) if there
exist constants c > 0, n0 > 0 such
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0.

We write f(n) = O(g(n)) if there
exist constants c > 0, n0 > 0 such
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0.

O-notation (upper bounds):

EXAMPLE: 2n2 = O(n3)

functions,
not values

(c = 1, n0 = 2)

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.5

Asymptotic notation

We write f(n) = O(g(n)) if there
exist constants c > 0, n0 > 0 such
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0.

We write f(n) = O(g(n)) if there
exist constants c > 0, n0 > 0 such
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0.

O-notation (upper bounds):

EXAMPLE: 2n2 = O(n3)

functions,
not values

funny, “one-way”
equality

(c = 1, n0 = 2)

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.6

Set definition of O-notation

O(g(n)) = { f(n) : there exist constants
c > 0, n0 > 0 such
that 0 ≤ f(n) ≤ cg(n)
for all n ≥ n0 }

O(g(n)) = { f(n) : there exist constants
c > 0, n0 > 0 such
that 0 ≤ f(n) ≤ cg(n)
for all n ≥ n0 }

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.7

Set definition of O-notation

O(g(n)) = { f(n) : there exist constants
c > 0, n0 > 0 such
that 0 ≤ f(n) ≤ cg(n)
for all n ≥ n0 }

O(g(n)) = { f(n) : there exist constants
c > 0, n0 > 0 such
that 0 ≤ f(n) ≤ cg(n)
for all n ≥ n0 }

EXAMPLE: 2n2 ∈ O(n3)

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.8

Set definition of O-notation

O(g(n)) = { f(n) : there exist constants
c > 0, n0 > 0 such
that 0 ≤ f(n) ≤ cg(n)
for all n ≥ n0 }

O(g(n)) = { f(n) : there exist constants
c > 0, n0 > 0 such
that 0 ≤ f(n) ≤ cg(n)
for all n ≥ n0 }

EXAMPLE: 2n2 ∈ O(n3)
(Logicians: λn.2n2 ∈ O(λn.n3), but it’s
convenient to be sloppy, as long as we
understand what’s really going on.)

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.9

Macro substitution

Convention: A set in a formula represents
an anonymous function in the set.

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.10

Macro substitution

Convention: A set in a formula represents
an anonymous function in the set.

f(n) = n3 + O(n2)
means
f(n) = n3 + h(n)
for some h(n) ∈ O(n2) .

EXAMPLE:

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.11

Ω−notation (lower bounds)

O-notation is an upper-bound notation. It
makes no sense to say f(n) is at least O(n2).

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.12

Ω−notation (lower bounds)

Ω(g(n)) = { f(n) : there exist constants
c > 0, n0 > 0 such
that 0 ≤ cg(n) ≤ f(n)
for all n ≥ n0 }

Ω(g(n)) = { f(n) : there exist constants
c > 0, n0 > 0 such
that 0 ≤ cg(n) ≤ f(n)
for all n ≥ n0 }

O-notation is an upper-bound notation. It
makes no sense to say f(n) is at least O(n2).

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.13

Ω−notation (lower bounds)

Ω(g(n)) = { f(n) : there exist constants
c > 0, n0 > 0 such
that 0 ≤ cg(n) ≤ f(n)
for all n ≥ n0 }

Ω(g(n)) = { f(n) : there exist constants
c > 0, n0 > 0 such
that 0 ≤ cg(n) ≤ f(n)
for all n ≥ n0 }

EXAMPLE:)(lgnn Ω=
© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.14

Θ-notation (tight bounds)

Θ(g(n)) = O (g(n)) ∩ Ω(g(n))Θ(g(n)) = O (g(n)) ∩ Ω(g(n))

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.15

Θ-notation (tight bounds)

Θ(g(n)) = O (g(n)) ∩ Ω(g(n))Θ(g(n)) = O (g(n)) ∩ Ω(g(n))

EXAMPLE:)(2
2
1 22 nnn Θ=−

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.16

Θ-notation (tight bounds)

Θ(g(n)) = O (g(n)) ∩ Ω(g(n))Θ(g(n)) = O (g(n)) ∩ Ω(g(n))

EXAMPLE:)(2 22
2
1 nnn Θ=−

Theorem. The leading constant and low-
order terms don’t matter. □

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.17

Solving recurrences

• The analysis of merge sort from Lecture 1
required us to solve a recurrence.

• Recurrences are like solving integrals,
differential equations, etc.
oLearn a few tricks.

• Lecture 3: Applications of recurrences to
divide-and-conquer algorithms.

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.18

Substitution method

1. Guess the form of the solution.
2. Verify by induction.
3. Solve for constants.

The most general method:

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.19

Substitution method

1. Guess the form of the solution.
2. Verify by induction.
3. Solve for constants.

The most general method:

EXAMPLE: T(n) = 4T(n/2) + n
• [Assume that T(1) = Θ(1).]
• Guess O(n3) . (Prove O and Ω separately.)
• Assume that T(k) ≤ ck3 for k < n .
• Prove T(n) ≤ cn3 by induction.

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.20

Example of substitution

3

33

3

3

))2/((
)2/(

)2/(4
)2/(4)(

cn
nnccn

nnc
nnc

nnTnT

≤
−−=

+=
+≤

+=

desired – residual

whenever (c/2)n3 – n ≥ 0, for example,
if c ≥ 2 and n ≥ 1.

desired

residual

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.21

Example (continued)
• We must also handle the initial conditions,

that is, ground the induction with base
cases.

• Base: T(n) = Θ(1) for all n < n0, where n0
is a suitable constant.

• For 1 ≤ n < n0, we have “Θ(1)” ≤ cn3, if we
pick c big enough.

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.22

Example (continued)
• We must also handle the initial conditions,

that is, ground the induction with base
cases.

• Base: T(n) = Θ(1) for all n < n0, where n0
is a suitable constant.

• For 1 ≤ n < n0, we have “Θ(1)” ≤ cn3, if we
pick c big enough.

This bound is not tight!
© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.23

A tighter upper bound?

We shall prove that T(n) = O(n2).

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.24

A tighter upper bound?

We shall prove that T(n) = O(n2).

Assume that T(k) ≤ ck2 for k < n:

)(

)2/(4
)2/(4)(

2

2

2

nO
ncn

nnc
nnTnT

=
+=

+≤
+=

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.25

A tighter upper bound?

We shall prove that T(n) = O(n2).

Assume that T(k) ≤ ck2 for k < n:

)(

)2/(4
)2/(4)(

2

2

2

nO
ncn

nnc
nnTnT

=
+=

+≤
+=

Wrong! We must prove the I.H.

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.26

A tighter upper bound?

We shall prove that T(n) = O(n2).

Assume that T(k) ≤ ck2 for k < n:

)(

)2/(4
)2/(4)(

2

2

2

nO
ncn

nnc
nnTnT

=
+=

+≤
+=

Wrong! We must prove the I.H.

2

2)(
cn

ncn
≤

−−=
for no choice of c > 0. Lose!

[desired – residual]

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.27

A tighter upper bound!
IDEA: Strengthen the inductive hypothesis.
• Subtract a low-order term.
Inductive hypothesis: T(k) ≤ c1k2 – c2k for k < n.

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.28

A tighter upper bound!
IDEA: Strengthen the inductive hypothesis.
• Subtract a low-order term.
Inductive hypothesis: T(k) ≤ c1k2 – c2k for k < n.

T(n) = 4T(n/2) + n
= 4(c1(n/2)2 – c2(n/2) + n
= c1n2 – 2c2n + n
= c1n2 – c2n – (c2n – n)
≤ c1n2 – c2n if c2 ≥ 1.

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.29

A tighter upper bound!
IDEA: Strengthen the inductive hypothesis.
• Subtract a low-order term.
Inductive hypothesis: T(k) ≤ c1k2 – c2k for k < n.

Pick c1 big enough to handle the initial conditions.

T(n) = 4T(n/2) + n
= 4(c1(n/2)2 – c2(n/2) + n
= c1n2 – 2c2n + n
= c1n2 – c2n – (c2n – n)
≤ c1n2 – c2n if c2 ≥ 1.

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.30

Recursion-tree method

• A recursion tree models the costs (time) of a
recursive execution of an algorithm.

• The recursion-tree method can be unreliable,
just like any method that uses ellipses (…).

• The recursion-tree method promotes intuition,
however.

• The recursion tree method is good for
generating guesses for the substitution method.

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.31

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.32

Example of recursion tree

T(n)

Solve T(n) = T(n/4) + T(n/2) + n2:

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.33

Example of recursion tree

T(n/4) T(n/2)

n2

Solve T(n) = T(n/4) + T(n/2) + n2:

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.34

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

n2

(n/4)2 (n/2)2

T(n/16) T(n/8) T(n/8) T(n/4)

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.35

Example of recursion tree

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

Θ(1)

…

Solve T(n) = T(n/4) + T(n/2) + n2:
n2

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.36

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

Θ(1)

…

2nn2

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.37

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

Θ(1)

…

2
16
5 n

2nn2

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.38

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2

Θ(1)

…

2
16
5 n

2n

2
256
25 n

n2

(n/2)2

…

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.39

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2

Θ(1)

…

2
16
5 n

2n

2
256
25 n

() ()() 1 3
16
52

16
5

16
52 L++++n

…

Total =
= Θ(n2)

n2

(n/2)2

geometric series
© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.40

The master method

The master method applies to recurrences of
the form

T(n) = a T(n/b) + f (n) ,
where a ≥ 1, b > 1, and f is asymptotically
positive.

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.41

Three common cases
Compare f (n) with nlogba:
1. f (n) = O(nlogba – ε) for some constant ε > 0.

• f (n) grows polynomially slower than nlogba

(by an nε factor).
Solution: T(n) = Θ(nlogba) .

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.42

Three common cases
Compare f (n) with nlogba:
1. f (n) = O(nlogba – ε) for some constant ε > 0.

• f (n) grows polynomially slower than nlogba

(by an nε factor).
Solution: T(n) = Θ(nlogba) .

2. f (n) = Θ(nlogba lgkn) for some constant k ≥ 0.
• f (n) and nlogba grow at similar rates.
Solution: T(n) = Θ(nlogba lgk+1n) .

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.43

Three common cases (cont.)
Compare f (n) with nlogba:

3. f (n) = Ω(nlogba + ε) for some constant ε > 0.
• f (n) grows polynomially faster than nlogba (by

an nε factor),
and f (n) satisfies the regularity condition that
a f (n/b) ≤ c f (n) for some constant c < 1.
Solution: T(n) = Θ(f (n)) .

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.44

Examples

EX. T(n) = 4T(n/2) + n
a = 4, b = 2 ⇒ nlogba = n2; f (n) = n.
CASE 1: f (n) = O(n2 – ε) for ε = 1.
∴ T(n) = Θ(n2).

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.45

Examples

EX. T(n) = 4T(n/2) + n
a = 4, b = 2 ⇒ nlogba = n2; f (n) = n.
CASE 1: f (n) = O(n2 – ε) for ε = 1.
∴ T(n) = Θ(n2).

EX. T(n) = 4T(n/2) + n2

a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2.
CASE 2: f (n) = Θ(n2lg0n), that is, k = 0.
∴ T(n) = Θ(n2lg n).

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.46

Examples

EX. T(n) = 4T(n/2) + n3

a = 4, b = 2 ⇒ nlogba = n2; f (n) = n3.
CASE 3: f (n) = Ω(n2 + ε) for ε = 1
and 4(n/2)3 ≤ cn3 (reg. cond.) for c = 1/2.
∴ T(n) = Θ(n3).

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.47

Examples

EX. T(n) = 4T(n/2) + n3

a = 4, b = 2 ⇒ nlogba = n2; f (n) = n3.
CASE 3: f (n) = Ω(n2 + ε) for ε = 1
and 4(n/2)3 ≤ cn3 (reg. cond.) for c = 1/2.
∴ T(n) = Θ(n3).

EX. T(n) = 4T(n/2) + n2/lgn
a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2/lgn.
Master method does not apply. In particular,
for every constant ε > 0, we have nε = ω(lgn).

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.48

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

…
Recursion tree:

…
f (n) a

f (n/b2)f (n/b2) f (n/b2)…
a

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.49

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

…
Recursion tree:

…
f (n) a

f (n/b2)f (n/b2) f (n/b2)…
a

f (n)

a f (n/b)

a2 f (n/b2)

…

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.50

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

…
Recursion tree:

…
f (n) a

f (n/b2)f (n/b2) f (n/b2)…
ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.51

nlogbaΤ (1)

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

…
Recursion tree:

…
f (n) a

f (n/b2)f (n/b2) f (n/b2)…
ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

#leaves = ah

= alogbn

= nlogba

…

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.52

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

…
Recursion tree:

…
f (n) a

f (n/b2)f (n/b2) f (n/b2)…
ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

CASE 1: The weight increases
geometrically from the root to the
leaves. The leaves hold a constant
fraction of the total weight.

CASE 1: The weight increases
geometrically from the root to the
leaves. The leaves hold a constant
fraction of the total weight.

Θ(nlogba)

…

nlogbaΤ (1)

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.53

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

…
Recursion tree:

…
f (n) a

f (n/b2)f (n/b2) f (n/b2)…
ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

CASE 2: (k = 0) The weight
is approximately the same on
each of the logbn levels.

CASE 2: (k = 0) The weight
is approximately the same on
each of the logbn levels.

Θ(nlogbalg n)

…

nlogbaΤ (1)

© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.54

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

…
Recursion tree:

…
f (n) a

f (n/b2)f (n/b2) f (n/b2)…
ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…CASE 3: The weight decreases
geometrically from the root to the
leaves. The root holds a constant
fraction of the total weight.

CASE 3: The weight decreases
geometrically from the root to the
leaves. The root holds a constant
fraction of the total weight.

nlogbaΤ (1)

Θ(f (n))
© 2001–4 by Charles E. Leiserson

September 13, 2004 Introduction to Algorithms L2.55

Appendix: geometric series

1

11 2
x

xx
−

=+++ L for |x| < 1

1

11
1

2
x

xxxx
n

n
−

−=++++
+

L for x ≠ 1

Return to last
slide viewed.

© 2001–4 by Charles E. Leiserson

