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LECTURE 2
Asymptotic Notation

e 0-, Q)-, and ®-notation
Recurrences

* Substitution method

» [terating the recurrence
* Recursion tree

* Master method
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| Asymptotic notation

O-notation (upper bounds):

‘We write /(1) = O(2(n)) if there
exist constants ¢ > 0, n, > 0 such
that 0 < f(n) < cg(n) for all n > n
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B Asymptotlc notation

O-notation (upper bounds):

‘We write /(1) = O(2(n)) if there
exist constants ¢ > 0, n, > 0 such
that O < ﬂn) < cg(n) for all n: > > 1y
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~ " Asymptotic notation

Y

O-notation (upper bounds):

‘We write /(1) = O(2(n)) if there
exist constants ¢ > 0, n, > 0 such |
that 0 < f(n) < cg(n) tor all n 2 n,. |

ExampLE: 212 =0O(n’) (c=1,n,=2)

/

functions,
not values
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" & Asymptotic notation

O-notation (upper bounds):

‘We write /(1) = O(2(n)) if there
exist constants ¢ > 0, n, > 0 such |
that 0 < f(n) < cg(n) for all n 2 n;. |

ExampLE: 212 = O(n’) (c=1,n,=2)

/ funny, “one-way”
functions, equality
not values
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— | Set definition of O-notation

/O(g(n)) = { f(n) : there exist constants
¢>0,n,>0such |
that 0 < f(n) < cg(n)
for all n2 > Ty }
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ALGORITHMS

Set definition of O-notation

/O(g(n)) = { f(n) : there exist constants
c >0, n,> 0 such
that 0 < f(n) < cg(n)
for all nz > 1y }

AN A

ExampLE: 2n° € O(n?)
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“‘ Set definition of O-notation

/O(g(n)) = { f(n) : there exist constants |
c>0,n,>0such |
that 0 < f(n) < cg(n)
for all n> > 11y }

ExampLE: 2n° € O(n?)

(Logicians: \n.2n> € O(\An.n’), but it’s
convenient to be sloppy, as long as we
understand what’s really going on.)
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LGORITHMS

.a.‘. i

- Macro substitution

N
Y

Convention: A set1n a formula represents
an anonymous function in the set.
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=~~~ Macro substitution

Y

Convention: A set1n a formula represents
an anonymous function in the set.

ExampLE:  f(n) = n’ + O(n?)
means

f(n) =n’ + h(n)
for some /i(n) € O(n?) .
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' , Y QO-notation (lower bounds)

q

Ry

O-notation 1s an upper-bound notation. It
makes no sense to say f(#) is at least O(n?).
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“‘ Q—notatlon (lower bounds)

O-notation 1s an upper-bound notation. It
makes no sense to say f(n) is at least O(n?).

/Q(g(n)) = { f/(n) : there exist constants

¢>0,n,>0such |

that 0 < cg(n) < f(n)
for all n> 2 11y }
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“ <t Q—notation (lower bounds)

/Q(g(”)) = { f(n) : there exist constants

c >0, n,> 0 such

that O < Cg(n) <f(n)
for all n > ”o }

ExampLe: /1 =Q(lgn)
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ALGORITHMS
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ALGORITHMS

..i." \'b- T .

®-notation (tight bounds)

O(g(n) = O (g(n)) N €(g(n))

EXAMPLE: ;nz —2n = @(nz)
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:;' J ®-notation (tight bounds)
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EXAMPLE: ;nz —2n=0(n")

Theorem. The leading constant and low-
order terms don’t matter. O
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ALGORITHMS

~ & Solving recurrences

* The analysis of merge sort from Lecture 1
required us to solve a recurrence.

* Recurrences are like solving integrals,
differential equations, etc.
o Learn a few tricks.

* Lecture 3. Applications of recurrences to
divide-and-conquer algorithms.
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——

Substitution method

Sh

The most general method.:

1. Guess the form of the solution.
2. Verify by induction.
3. Solve for constants.
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' Substitution method

The most general method.:

1. Guess the form of the solution.
2. Verify by induction.
3. Solve for constants.

EXAMPLE: 1(n)=41(n/2) +n
* [Assume that 7(1) = O(1).]

* Guess O(n°) . (Prove O and (2 separately.)
« Assume that 7(k) < ¢k’ for k<n .

* Prove 7(n) < cn’ by induction.
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= ~+ Example of substitution

I'(n)=4T(n/2)+n
<4dc(n/2)+n
=(c/2)n3 +n
=cn’ —((¢/2)n3 —n) — desired — residual
< cn’ — desired

whenever (¢/2)n° —n > 0, for example,

ifc>2andn > 1.
residual
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——

Example (continued)

Sh

 We must also handle the 1nitial conditions,
that 1s, ground the induction with base
cases.

* Base: T(n) = ©(1) for all n < n,, where n,
1s a suitable constant.

* For | <n <n, we have “0O(1)” <cn’, if we
pick ¢ big enough.
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- 4+ Example (continued)

q

Ry

 We must also handle the 1nitial conditions,
that 1s, ground the induction with base
cases.

* Base: T(n) = ©(1) for all n < n,, where n,
1s a suitable constant.

* For | <n <n, we have “0O(1)” <cn’, if we
pick ¢ big enough.

This bound is not tight!
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~ " A tighter upper bound?

Y

We shall prove that 7(n) = O(n?).
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A tighter upper bound?

We shall prove that 7(n) = O(n?).

Assume that 7(k) < ck? for k < n:
I'(n)=4T(n/2)+n
< 4c(n/2)2 +n

=Cn2+n

=0(n")
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s = «| A tighter upper bound?

We shall prove that 7(n) = O(n?).

Assume that 7(k) < ck? for k < n:
I'(n)y=4T(n/2)+n
< 4c(n/2)2 +n

=cn2+n

= % ) Wrong! We must prove the 1.H.
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. - «| A tighter upper bound?

We shall prove that 7(n) = O(n?).

Assume that 7(k) < ck? for k < n:
I'(n)y=4T(n/2)+n
< 4c(n/2)2 +n

=cn2+n

= % ) Wrong! We must prove the I.H.
=cn? —(-n) [ desired — residual ]

< cn?  for no choice of ¢ > 0. Lose!
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S " 1A tighter upper bound!

IDEA: Strengthen the inductive hypothesis.
* Subtract a low-order term.

Inductive hypothesis: T(k) < ¢, k* — ¢,k for k < n.
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- «| A tighter upper bound!

IDEA: Strengthen the inductive hypothesis.
* Subtract a low-order term.

Inductive hypothesis: T(k) < ¢, k* — ¢,k for k < n.
I(n) =4T(n/2) + n
=4(c,(n/2)* — c,(n/2) + n
=cn*—2c,n+n
=cn*—c,n—(c,n —n)
<cn?—con ifc, 2 1.
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- - «| A tighter upper bound!

IDEA: Strengthen the inductive hypothesis.
* Subtract a low-order term.

Inductive hypothesis: T(k) < ¢, k* — ¢,k for k < n.
I(n) =4T(n/2) + n
=4(c,(n/2)* — c,(n/2) + n
=cn*—2c,n+n
=cn*—c,n—(c,n —n)
<cn?—con ife, > 1.
Pick ¢, big enough to handle the 1nitial conditions.
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.‘—;- Recursion-tree method

N
Qv

* A recursion tree models the costs (time) of a
recursive execution of an algorithm.

* The recursion-tree method can be unreliable,
just like any method that uses ellipses (...).

* The recursion-tree method promotes intuition,
however.

* The recursion tree method 1s good for
generating guesses for the substitution method.
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s Example of recursion tree

Solve 7(n) = T(n/4) + T(n/2) + n*:
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Example of recursion tree

Solife T(n) = T(n/4) + T(n2) + n*:
I(n)

© 2001-4 by Charles E. Leiserson
September 13, 2004 Introduction to Algorithms L2.32



s Example of recursion tree

Solve 7(n) = T(n/4) + T(n/2) + n?:
>

T(n/4) 1(n/2)
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=+ Example of recursion tree

YN
Ve

Solve 7(n) = T(n/4) + T(n/2) + n?:

2
T
(n/4)? (n/2)?
VRN VAN
I(n/16) T(n/8) T(n/8)  T(n/4)
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=+ Example of recursion tree

YN
Ve

Solve 7(n) = T(n/4) + T(n/2) + n?:

7?2
T
(n/4)? (n/2)?
VRN VN
(n/16)>  (n/8)*  (n/8)?  (n/4)?

@(/1)
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- | Example of recursion tree

YN
Ve

Solve 7(n) = T(n/4) + T(n/2) + n?:

nz ————————————————————————————————————————————————————————————— n2
/ \
(n/4)? (n/2)?
VRN VN
(n/16)>  (n/8)*  (n/8)?  (n/4)?
/
/
O(1)
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= ++| Example of recursion tree

Ve

Solve 7(n) = T(n/4) + T(n/2) + n?:

nz ————————————————————————————————————————————————————————————— n 2
(n/4)? ) T
/N /N

(n/16)>  (n/8)*  (n/8)?  (n/4)?

@(/1)
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Ve

~ | Example of recursion tree

Solve 7(n) = T(n/4) + T(n/2) + n?:

n2 —————————————— n2
(n/4)? ) T
/N /N ”s
(n/16)>  (n/8)* (/8 (/4> 5 n?
/
/
O(1)
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=+ Example of recursion tree

Ve

Solve 7(n) = T(n/4) + T(n/2) + n?:

n2 —————————————— : n2
(n/4)? ) T
/N /N ”s
(n/16)>  (n/8)* (/8 (/4> 5 n?
/ o
/
O(1 _ 2 2 (5¥
(1) Total =7 (1+156+(156) +(156) +)

= 0O(n?) geometric series
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The master method

«

The master method applies to recurrences of
the form

I(n) = aT(n/b) + f(n),

where a > 1, 5 > 1, and f 1s asymptotically
positive.
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=~ &+ Three common cases
Compare /(1) with n'°g:
1. f(n)= O(n'er?~¢) for some constant € > 0.

* f(n) grows polynomially slower than 7'°:¢
(by an 7 factor).

Solution: T(n) = O(n'oer?)
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Three common cases

Compare /(1) with n'°g:
1. f(n)= O(n'2"~¢) for some constant & > 0.

* f(n) grows polynomially slower than 7'°:¢
(by an 7 factor).

Solution: T(n) = O(n'oer?)
2. f(n)=0O(n'"e]1g"n) for some constant & > 0.

e f(n) and n'°2¢ grow at similar rates.
Solution: T(n) = O(n'oe 1g"1n) .
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“ &% Three common cases (cont.)

Compare /(1) with n'°g:
3. f(n)= Q(n'o2r¢*#) for some constant & > 0.

e f(n) grows polynomially faster than »'°2¢ (by
an n° factor),

and f(n) satisfies the regularity condition that
af(n/b) <cf(n) for some constant ¢ < 1.

Solution: T(n) =0O(f(n)) .
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\ Examples

EX. T(n)=41(n/2) +n
a=4,b=2= nlosi=p?; f(n)=n.
CASE 1: f(n) = O(n* ) fore=1.
- T(n) = O(n?).
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* Examples

EX. T(n)=41(n/2) +n
a=4,b=2= nlosi=p?; f(n)=n.
CASE 1: f(n) = O(n* ) fore=1.
- T(n) = O(n?).

EX. T(n)=4T(n/2) + n?
a=4,b=2= nloti=p?; f(n)=n’
CASE 2: f(n) = O(n’1g"n), that is, k = 0.
- T(n) = O(n’lgn).
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" \ Examples

EXx. T(n)=4T(n/2) + n’
a=4,b=2= nloti=p?; f(n)=n’.
CASE 3: f(n) = Q(n” " ¢) fore =1
and 4(n/2)° < cn’ (reg. cond.) for ¢ = 1/2.
- T(n) = O(n°).
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" &+ Examples

EXx. T(n)=4T(n/2) + n’
a=4,b=2= nloti=p?; f(n)=n’.
CASE 3: f(n) = Q(n” " ¢) fore =1
and 4(n/2)° < cn’ (reg. cond.) for ¢ = 1/2.
- T(n) = O(n°).

EX. T(n)=4T(n/2) + n?*/1gn
a=4,b=2 = nloe¢=p?; f(n) = n?/gn.
Master method does not apply. In particular,
for every constant € > 0, we have n° =w(lgn).

© 2001-4 by Charles E. Leiserson
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=+ ldea of master theorem

Recursion tree:
ONP
/M

f@/b) f(n/b) --- f(n/b)
/\/\_)\
f(n/b?) f(n/b*) --- f(n/b?)
/

()
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= o ldea of master theorem

Recursion tree:

f(n/b) f(n/b) --- f(n/b)— af(n/b)
/\/\_)\

F(/BY) f(/B?) ==+ f(n/BE) a’ f(n/b%)
/
/
(1)
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= .~ Idea of master theorem

‘\ \‘

Recursion tree:

i L4 S — J(n)

f(n/b) f(n/b) --- f(n/b)— af(n/b)
h = log,n / \/\_)\

(/B f(n/B2) -+ f(n/BF) s a’ f(n/b)
/
/
b T(1)
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| Jn) o f(n)
A
f(n/b) f(n/b) --- f(n/b)— af(n/b)

h = log;n / \/\_)\

N R e E— a1 (n/?)
/
" #leaves = o :
! — alogbn
} T(1) s oea | n'oera T(1)
=n
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h=log,n /\/~>\

(/B f(n/B2) -+ f(n/BF) s a’ f(n/b)
/
" (CASE 1: The weight increases
geometrically from the root to the
| 7(1) |1leaves. The leaves hold a constant ||~ 72'°%“ 7(1)

fraction of the total weight.

@(nlogba)
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=+ ldea of master theorem

f(n/b) f(n/b) --- f(n/b)— af(n/b)

h =logn / \/\_)\a
F/B?) f(/B2) -+ f(n/bR) a2 f (n/b?)
/

,: ‘CASE 2: (k= 0) The weight
______ 1s approximately the same onf| logpa
() each of the log,n levels. " 1(1)

O(n'°er%g n)

© 20014 by Charles E. Lei
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h =logn / \YL)\
F/B?) f(/B2) < f(n/B) a2 f(n/b?)
/

" (CASE 3: The weight decreases

geometrically from the root to the
| 7(1) |1eaves. The root holds a constant |72 7(1)

fraction of the total weight.

O(f(n))
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ALGORITHMS

| Appendix: geometric series

n+l
1+x—|—x2+---+x":11x for x = 1
— X
1+x+xz+---=11 for [x| <1
— X

Return to last
slide viewed. o
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