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LECTURE 2
Asymptotic Notation
• O-, Ω-, and Θ-notation
Recurrences
• Substitution method
• Iterating the recurrence
• Recursion tree
• Master method
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Asymptotic notation

We write f(n) = O(g(n)) if there 
exist constants c > 0, n0 > 0 such 
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0.

We write f(n) = O(g(n)) if there 
exist constants c > 0, n0 > 0 such 
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0.

O-notation (upper bounds):
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Asymptotic notation

We write f(n) = O(g(n)) if there 
exist constants c > 0, n0 > 0 such 
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0.

We write f(n) = O(g(n)) if there 
exist constants c > 0, n0 > 0 such 
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0.

O-notation (upper bounds):

EXAMPLE: 2n2 = O(n3) (c = 1, n0 = 2)
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Asymptotic notation

We write f(n) = O(g(n)) if there 
exist constants c > 0, n0 > 0 such 
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0.

We write f(n) = O(g(n)) if there 
exist constants c > 0, n0 > 0 such 
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0.

O-notation (upper bounds):

EXAMPLE: 2n2 = O(n3)

functions, 
not values

(c = 1, n0 = 2)
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Asymptotic notation

We write f(n) = O(g(n)) if there 
exist constants c > 0, n0 > 0 such 
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0.

We write f(n) = O(g(n)) if there 
exist constants c > 0, n0 > 0 such 
that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0.

O-notation (upper bounds):

EXAMPLE: 2n2 = O(n3)

functions, 
not values

funny, “one-way” 
equality

(c = 1, n0 = 2)
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Set definition of O-notation

O(g(n)) = { f(n) : there exist constants 
c > 0, n0 > 0 such 
that 0 ≤ f(n) ≤ cg(n)
for all n ≥ n0 }

O(g(n)) = { f(n) : there exist constants 
c > 0, n0 > 0 such 
that 0 ≤ f(n) ≤ cg(n)
for all n ≥ n0 }
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Set definition of O-notation

O(g(n)) = { f(n) : there exist constants 
c > 0, n0 > 0 such 
that 0 ≤ f(n) ≤ cg(n)
for all n ≥ n0 }

O(g(n)) = { f(n) : there exist constants 
c > 0, n0 > 0 such 
that 0 ≤ f(n) ≤ cg(n)
for all n ≥ n0 }

EXAMPLE: 2n2 ∈ O(n3)
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Set definition of O-notation

O(g(n)) = { f(n) : there exist constants 
c > 0, n0 > 0 such 
that 0 ≤ f(n) ≤ cg(n)
for all n ≥ n0 }

O(g(n)) = { f(n) : there exist constants 
c > 0, n0 > 0 such 
that 0 ≤ f(n) ≤ cg(n)
for all n ≥ n0 }

EXAMPLE: 2n2 ∈ O(n3)
(Logicians: λn.2n2 ∈ O(λn.n3), but it’s 
convenient to be sloppy, as long as we 
understand what’s really going on.)
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Macro substitution

Convention: A set in a formula represents 
an anonymous function in the set.
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Macro substitution

Convention: A set in a formula represents 
an anonymous function in the set.

f(n) = n3 + O(n2) 
means 
f(n) = n3 + h(n)
for some h(n) ∈ O(n2) .

EXAMPLE:
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Ω−notation (lower bounds)

O-notation is an upper-bound notation.  It 
makes no sense to say f(n) is at least O(n2).
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Ω−notation (lower bounds)

Ω(g(n)) = { f(n) : there exist constants 
c > 0, n0 > 0 such 
that 0 ≤ cg(n) ≤ f(n)
for all n ≥ n0 }

Ω(g(n)) = { f(n) : there exist constants 
c > 0, n0 > 0 such 
that 0 ≤ cg(n) ≤ f(n)
for all n ≥ n0 }

O-notation is an upper-bound notation.  It 
makes no sense to say f(n) is at least O(n2).
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Ω−notation (lower bounds)

Ω(g(n)) = { f(n) : there exist constants 
c > 0, n0 > 0 such 
that 0 ≤ cg(n) ≤ f(n)
for all n ≥ n0 }

Ω(g(n)) = { f(n) : there exist constants 
c > 0, n0 > 0 such 
that 0 ≤ cg(n) ≤ f(n)
for all n ≥ n0 }

EXAMPLE: )(lgnn Ω=
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Θ-notation (tight bounds)

Θ(g(n)) = O (g(n))  ∩ Ω(g(n))Θ(g(n)) = O (g(n))  ∩ Ω(g(n))
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Θ-notation (tight bounds)

Θ(g(n)) = O (g(n))  ∩ Ω(g(n))Θ(g(n)) = O (g(n))  ∩ Ω(g(n))

EXAMPLE: )(2
2
1 22 nnn Θ=−
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Θ-notation (tight bounds)

Θ(g(n)) = O (g(n))  ∩ Ω(g(n))Θ(g(n)) = O (g(n))  ∩ Ω(g(n))

EXAMPLE: )(2 22
2
1 nnn Θ=−

Theorem. The leading constant and low-
order terms don’t matter.  □
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Solving recurrences

• The analysis of merge sort from Lecture 1
required us to solve a recurrence.

• Recurrences are like solving integrals, 
differential equations, etc.
oLearn a few tricks.

• Lecture 3: Applications of recurrences to 
divide-and-conquer algorithms.
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Substitution method

1. Guess the form of the solution.
2. Verify by induction.
3. Solve for constants.

The most general method:
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Substitution method

1. Guess the form of the solution.
2. Verify by induction.
3. Solve for constants.

The most general method:

EXAMPLE: T(n) = 4T(n/2) + n
• [Assume that T(1) = Θ(1).]
• Guess O(n3) .  (Prove O and Ω separately.)
• Assume that T(k) ≤ ck3 for k < n .
• Prove T(n) ≤ cn3 by induction.
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Example of substitution

3

33

3

3

))2/((
)2/(

)2/(4
)2/(4)(

cn
nnccn

nnc
nnc

nnTnT

≤
−−=

+=
+≤

+=

desired – residual

whenever  (c/2)n3 – n ≥ 0, for example, 
if c ≥ 2 and n ≥ 1.

desired

residual
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Example (continued)
• We must also handle the initial conditions, 

that is, ground the induction with base 
cases.

• Base: T(n) = Θ(1) for all n < n0, where n0
is a suitable constant.

• For 1 ≤ n < n0, we have “Θ(1)” ≤ cn3, if we 
pick c big enough.
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Example (continued)
• We must also handle the initial conditions, 

that is, ground the induction with base 
cases.

• Base: T(n) = Θ(1) for all n < n0, where n0
is a suitable constant.

• For 1 ≤ n < n0, we have “Θ(1)” ≤ cn3, if we 
pick c big enough.

This bound is not tight!
© 2001–4 by Charles E. Leiserson
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A tighter upper bound?

We shall prove that T(n) = O(n2).

© 2001–4 by Charles E. Leiserson
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A tighter upper bound?

We shall prove that T(n) = O(n2).

Assume that T(k) ≤ ck2 for k < n:

)(

)2/(4
)2/(4)(

2

2

2

nO
ncn

nnc
nnTnT

=
+=

+≤
+=
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A tighter upper bound?

We shall prove that T(n) = O(n2).

Assume that T(k) ≤ ck2 for k < n:

)(

)2/(4
)2/(4)(

2

2

2

nO
ncn

nnc
nnTnT

=
+=

+≤
+=

Wrong! We must prove the I.H.
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A tighter upper bound?

We shall prove that T(n) = O(n2).

Assume that T(k) ≤ ck2 for k < n:

)(

)2/(4
)2/(4)(

2

2

2

nO
ncn

nnc
nnTnT

=
+=

+≤
+=

Wrong! We must prove the I.H.

2

2 )(
cn

ncn
≤

−−=
for no choice of c > 0.  Lose!

[ desired – residual ]
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A tighter upper bound!
IDEA: Strengthen the inductive hypothesis.
• Subtract a low-order term.
Inductive hypothesis: T(k) ≤ c1k2 – c2k for k < n.

© 2001–4 by Charles E. Leiserson
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A tighter upper bound!
IDEA: Strengthen the inductive hypothesis.
• Subtract a low-order term.
Inductive hypothesis: T(k) ≤ c1k2 – c2k for k < n.

T(n) = 4T(n/2) + n
= 4(c1(n/2)2 – c2(n/2) + n
= c1n2 – 2c2n + n
= c1n2 – c2n – (c2n – n)
≤ c1n2 – c2n if c2 ≥ 1.
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A tighter upper bound!
IDEA: Strengthen the inductive hypothesis.
• Subtract a low-order term.
Inductive hypothesis: T(k) ≤ c1k2 – c2k for k < n.

Pick c1 big enough to handle the initial conditions.

T(n) = 4T(n/2) + n
= 4(c1(n/2)2 – c2(n/2) + n
= c1n2 – 2c2n + n
= c1n2 – c2n – (c2n – n)
≤ c1n2 – c2n if c2 ≥ 1.
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Recursion-tree method

• A recursion tree models the costs (time) of a 
recursive execution of an algorithm.

• The recursion-tree method can be unreliable, 
just like any method that uses ellipses (…).

• The recursion-tree method promotes intuition, 
however. 

• The recursion tree method is good for 
generating guesses for the substitution method.
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Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:
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Example of recursion tree

T(n)

Solve T(n) = T(n/4) + T(n/2) + n2:
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Example of recursion tree

T(n/4) T(n/2)

n2

Solve T(n) = T(n/4) + T(n/2) + n2:
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Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

n2

(n/4)2 (n/2)2

T(n/16) T(n/8) T(n/8) T(n/4)
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Example of recursion tree

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

Θ(1)

…

Solve T(n) = T(n/4) + T(n/2) + n2:
n2
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Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

Θ(1)

…

2nn2
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Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

Θ(1)

…

2
16
5 n

2nn2
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Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2

Θ(1)

…

2
16
5 n

2n

2
256
25 n

n2

(n/2)2

…
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Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2

Θ(1)

…

2
16
5 n

2n

2
256
25 n

( ) ( )( ) 1 3
16
52

16
5

16
52 L++++n

…

Total  =
= Θ(n2)

n2

(n/2)2

geometric series
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The master method

The master method applies to recurrences of 
the form

T(n) = a T(n/b) + f (n) , 
where a ≥ 1, b > 1, and f is asymptotically 
positive.

© 2001–4 by Charles E. Leiserson
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Three common cases
Compare f (n) with nlogba:
1. f (n) = O(nlogba – ε) for some constant ε > 0.

• f (n) grows polynomially slower than nlogba

(by an nε factor).
Solution: T(n) = Θ(nlogba) .

© 2001–4 by Charles E. Leiserson
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Three common cases
Compare f (n) with nlogba:
1. f (n) = O(nlogba – ε) for some constant ε > 0.

• f (n) grows polynomially slower than nlogba

(by an nε factor).
Solution: T(n) = Θ(nlogba) .

2. f (n) = Θ(nlogba lgkn) for some constant k ≥ 0.
• f (n) and nlogba grow at similar rates.
Solution: T(n) = Θ(nlogba lgk+1n) .
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Three common cases (cont.)
Compare f (n) with nlogba:

3. f (n) = Ω(nlogba + ε) for some constant ε > 0.
• f (n) grows polynomially faster than nlogba (by 

an nε factor),
and f (n) satisfies the regularity condition that 
a f (n/b) ≤ c f (n) for some constant c < 1.
Solution: T(n) = Θ( f (n)) .

© 2001–4 by Charles E. Leiserson
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Examples

EX. T(n) = 4T(n/2) + n
a = 4, b = 2 ⇒ nlogba = n2; f (n) = n.
CASE 1: f (n) = O(n2 – ε) for ε = 1.
∴ T(n) = Θ(n2).
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Examples

EX. T(n) = 4T(n/2) + n
a = 4, b = 2 ⇒ nlogba = n2; f (n) = n.
CASE 1: f (n) = O(n2 – ε) for ε = 1.
∴ T(n) = Θ(n2).

EX. T(n) = 4T(n/2) + n2

a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2.
CASE 2: f (n) = Θ(n2lg0n), that is, k = 0.
∴ T(n) = Θ(n2lg n).
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Examples

EX. T(n) = 4T(n/2) + n3

a = 4, b = 2 ⇒ nlogba = n2; f (n) = n3.
CASE 3: f (n) = Ω(n2 + ε) for ε = 1
and 4(n/2)3 ≤ cn3 (reg. cond.) for c = 1/2.
∴ T(n) = Θ(n3).
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Examples

EX. T(n) = 4T(n/2) + n3

a = 4, b = 2 ⇒ nlogba = n2; f (n) = n3.
CASE 3: f (n) = Ω(n2 + ε) for ε = 1
and 4(n/2)3 ≤ cn3 (reg. cond.) for c = 1/2.
∴ T(n) = Θ(n3).

EX. T(n) = 4T(n/2) + n2/lgn
a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2/lgn.
Master method does not apply.  In particular, 
for every constant ε > 0, we have nε = ω(lgn).
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f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

…
Recursion tree:

…
f (n) a

f (n/b2)f (n/b2) f (n/b2)…
a
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f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

…
Recursion tree:

…
f (n) a

f (n/b2)f (n/b2) f (n/b2)…
a

f (n)

a f (n/b)

a2 f (n/b2)

…
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f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

…
Recursion tree:

…
f (n) a

f (n/b2)f (n/b2) f (n/b2)…
ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…
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nlogbaΤ (1)

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

…
Recursion tree:

…
f (n) a

f (n/b2)f (n/b2) f (n/b2)…
ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

#leaves = ah

= alogbn

= nlogba

…
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f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

…
Recursion tree:

…
f (n) a

f (n/b2)f (n/b2) f (n/b2)…
ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

CASE 1: The weight increases 
geometrically from the root to the 
leaves. The leaves hold a constant 
fraction of the total weight.

CASE 1: The weight increases 
geometrically from the root to the 
leaves. The leaves hold a constant 
fraction of the total weight.

Θ(nlogba)

…

nlogbaΤ (1)
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f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

…
Recursion tree:

…
f (n) a

f (n/b2)f (n/b2) f (n/b2)…
ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

CASE 2: (k = 0) The weight 
is approximately the same on 
each of the logbn levels.

CASE 2: (k = 0) The weight 
is approximately the same on 
each of the logbn levels.

Θ(nlogbalg n)

…

nlogbaΤ (1)
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f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

…
Recursion tree:

…
f (n) a

f (n/b2)f (n/b2) f (n/b2)…
ah = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…CASE 3: The weight decreases 
geometrically from the root to the 
leaves. The root holds a constant 
fraction of the total weight.

CASE 3: The weight decreases 
geometrically from the root to the 
leaves. The root holds a constant 
fraction of the total weight.

nlogbaΤ (1)

Θ( f (n))
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Appendix: geometric series
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